TRACE

Copyright (c) 1980
by
Roger C. Wickenden

Pegasus Software
P.0. Box 10014
Honolulu, HI 96816

TRACE

A 6502 Machine Language Program for OSI computers from PEGASUS SOFTWARE.
Copyright (c) 1980 by Roger C. Wickenden.

OVERALL DESCRIPTION

TRACE is a 6502 machine language program that operates in Chio Scientific
microcomputers to provide a powerful tool for debugging and analyzing object
programs. The term "object program" refers to any 6502 machine language
program that may reside in memory concurrently with TRACE.

TRACE follows the inherent instruction sequence of the object program and
executes or emulates each instruction that it comes upon. Tracing may be
stopped at any point in the object program to permit register and memory con-
tents to be inspected and modified. Inspection feature enables the actual
performance of any instruction sequence of the object program to be observed
and compared with the intended performance, so that discrepancies may be pin=-
pointed. The modification feature enables the programmer to make "on the spot”
revisions to the program or to the data so that the effects of proposed correc-
tions to the program may be observed.

Both single-step and continuous-trace modes are provided. In single-step
mode, each command from the operator to resume the trace causes only the next
instruction of the object program to be observed. In continuous mode, one
intruction is traced after the other without stopping, so the object program
is effectively run in slow motion. This continues until one of four events
occurs:

) Depression of the "control A" key is recognized
) An illegal instruction is encountered

) A stack overflow condition is threatened

) A preset breakpoint is encountered.

It makes no difference whether the object code being traced is in Read Only
Memory (ROM) or Read-and-Write (RAM) Memory.

TRACE may be operated in a mode where the contents of the 6502 microprocessor
registers are visually displayed automatically for each instruction traced,
along with the hexadecimal representation of the instruction, its address, and
a mnemonic display of the instruction. Since each instruction so displayed
requires only ome line of printing, preceding lines on the output device show
the sequence of instrutions that led up to the last instruction traced.

INITIALIZING REGISTER CONTENTS

Before tracing the initial instruction of an object program it may be necessary
to set the contents of one or more registers and breakpoints. The contents of
A, P, S, X, and Y will be the values that existed upon entering TRACE, and often
these will be acceptable for beginning the desired trace.

The "I" command is used to designate the starting address of the program to be
traced, so it must be set to begin.

STARTING A TRACE

TRACE recognizes two trace modes which are selected by a single character as
follows:

T Trace Continuously
W "Walk" Thru a Single Instruction

After typing either of these commands, depressing either "RETURN" or the space
bar will put the command into effect.

STOPPING A TRACE

During a continuous trace one instruction is traced after another without stopping,
so the object program is effectively run in slow motion. This continues until
one of four events occurs:

élg Depression of the "Control A" key is recognized
2 An illegal instruction is encountered

(3) A stack overflow condition threatens, or

(4) A preset breakpoint is encountered.

If an attempt is made to trace an illegal instruction, tracing will halt and the
word "BAD" will be displayed on the screen followed by the address and contents
of the illegal instruction and a new prompt character will be displayed.

If TRACE finds the contents of the Stack Pointer to be in the range @@ thru g9
after tracing any instruction then the normal operation of TRACE is sidetracked.
This is because there is a danger that continued operation of TRACE would cause
a stack overflow condition if such a condition has not already occurred. The
character "S", the contents of the stack pointer, and a new prompt character are
displayed on the screen. It is then necessary to reset "S" to a suitable value
before starting another trace.

Once entry to TRACE has been accomplised, it will immediately display its prompt
character at the left edge of the screen:

TRACE is awaiting keyboard input.

INSPECTING AND MODIFYING MEMORY CONTENTS

A memory location is inspected by typing its hexadecimal address, using no more
than four characters, followed by a space. The contents of the addressed byte

- will immediately be displayed on the screen, in hexadecimal form, next to the

address. If no change is to be made in the byte's contents, the operator may
press the "RETURN" key. A new prompt character will appear on the next line.
If inspection of the next successive memory location is desired, the operator
depresses the "A" Kkey instead of the "RETURN" key. If it is desired to change
the contents of the byte, the desired contents are typed next to the existing
contents prior to depressing the "RETURN" or "#" key. The revised contents are
stored in the addressed location when the "RETURN" or "4" key is depressed.

INSPECTING AND MODIFYING REGISTER CONTENTS

A single character is used to designate each register as follows:

Accumulator

Program Counter (Instruction Pointer)
Process Status Register

Stack Pointer

Index Register X

Index Register Y

<< H®

The breakpoint pointers may be inspected or modified just like the registers, so
their symbols will be listed here also:

Hf First Breakpoint Pointer (Halt Location)
H1 Second Breakpoint Pointer

H8 Eighth Breakpoint Pointer
The single character "H" may also be used in place of HJ.

The register contents that will apply when the next instruction is traced may

be inspected by typing the appropriate symbol in the above list followed by a
space. If it is desired to change the contents of the register, the desired
contents are typed next to the existing contents and the "RETURN" key is depressed.
The "A" key should not be used when inspecting register contents.

If a breakpoint is encountered during a continuous trace, the trace will stop and
the breakpoint number (HO thru H7) will be displayed followed by a new prompt
character.

INSPECTING THE MOST-RECENTLY-TRACED INSTRUCTION LIST

Typing an "R" and then pressing "RETURY" causes the first portion of the most-
recently-traced instruction list to be displayed on the screen. The number of the
list may range from one thru sixteen.

Each line of the list contains three entries. The first entry is a four character
hexadecimal index to indentify the sequence of entries on the list. This facil-
itates finding a given place in the list when examining it a second time, or after
doing supplemental tracing after a first examination of the list.

The second entry of the line is the value of the Stack Pointer just before the
instruction was traced.

The third entry of the line contains the address of the instruction traced,

After the first portion of the most-recently-traced instruction list is displayed
on the screen, successive 1l6-line additions are made to the display each time

any key (other than a shift key) is depressed. When all 85 lines of the list
have been displayed an 86th line is displayed that contains only the index of the
next instruction to be stored in the list and a prompt character.

SEIECTING THE INSTRUCTIONS SAVED IN THE MOST-RECENTLY-TRACED INSTRUCTION LIST

The address of every instruction traced is not normally stored in the most-recent-
ly-traced instruction list. The only addresses stored are those of instructions
that are traced immediately after tracing "triggering" instructions. The normal
triggering instructions are the BRK, JMP, JSR, RTI, RTS, and the branch instruc-
tions. These are sufficient for unambiguously reconstucting the program sequence
from the most-recently-traced instruction list, together with a listing of the
object program. This moderate skipping between triggering instructions lengthens
the traced sequence over which the preceding program flow may be determined.

A command may be executed to make every instruction a triggering instruction, so

that no skipping occurs between triggering instructions. Another command makes

the skips between triggering instructions longer than normal by remomoving the

branch instructions from the normal group of triggering instructions. These commands
are summarized below:

L Long skips between triggering instructions - Details
of program flow will be lost

M Moderate skips between triggering instructions -
Program flow may be reconstructed

N No skips between triggering instructions - Every
instruction is stored.

Typing the command letter and then pressing "RETURN" causes the command to be
executed.

AUTOMATIC DISPLAY OF REGISTER CONTENTS

TRACE may be put into a mode where a visual display of register contents appears

on the screen automatically each time an instruction is traced. The resultant
heavy use of the screen by TRACE may prove to be an encumbrance when tracing object
programs that use the screen, both from the standpoint of confusion on the screen
and from the standpoint of program malfunction that may result if the object program
calls the operating system's screen character printing subroutine and TRACE also calls
it before the object program returns from it. TRACE attempts to recognize when this
situation arises and prints a dashed line as a warning when such a conflict occurs.
If a continuous trace is in progress whentthe conflict is recognized TRACE temporar-
ily suspends the authomatic display of register contents until the object program
returns from the screen character printing subroutine.

The commands associated with automatic display of register contents are as follows:
V. Visual display of register contents occurs automatically
U Unencumbered mode - No automatic display of register
contents.
Typing the command letter and then pressing "RETURN" causes the command to be

executed.

EXITING FROM THE TRACE PROCRAM

When TRACE is not in the midst of a continuous trace, depressing a "Control C"
will cause an exit from TRACE to the operating system.

H)1=)y)

- Pegasus Software
“p.o. box 10014 honolulu, hawaii 96816

LICENSE AGREEMENT

This software product is copyrighted by Pegasus Software. Any duplication or
redistribution of this product is expressly prohibited and in violation of
copyright laws. Each diskette containing this product has a unique serial num-
ber on file with Pegasus Software, both to protect the software and to serve as

a means of notifying software package owners of updates in the form of corrections
or improvements that may occur.

This product is sold on a one CPU basis. This means that purchasing one copy
of this product entitles the user to utilize the product on one system only.
The serial number of the computer as well as the license number of the software
are to be registered with Pegasus Software.

Only licensed software owners will receive updates and corrections, so it is very
important that the license form is completed and returned. Only licensed, Pegasus
supplied diskettts can be restored.

WARRANTY

There is no warranty, either expressed or implied, for this product. It has
been extensively tested by Pegasus Software and is believed to be reasonably
error free. However, Pegasus does not guarantee this product in any fashion

nor does Pegasus guarantee that all problems that may occur will be fixed. We
will, however, under normal circumstances make an attempt to help with any prob-
lems. that may occur and intend to support this software package to every extent
possible. If you have any problems with this software or think you have found

a problem please contact us. DPlease include a documented example of the problem.

Software License

Software Product: ‘ SZAC‘: gg‘zs:\‘llr—- \;QE

Diskette Serial Number: !_OO 3

System Serial Number: iﬁzﬂ

Please keep this information for your records

