A/65

Pegasus Software
P.0. Box 10014
Honolulu, Hawaii 96816
Phone (808) 735-5013

Version 1.0

Copyright (c) 1980
by COMPAS

CEAFPTER I

A/65 INTRODUCTION

—
[

GENERAL

4/65 is a powerful, two pass assembler for OHIO SCIENTIFIC COMPUTERS using

:ne 8" disk system. It is designed to provide the OSI user with a professional
uality assembler to allow the OSI system to be used as a “serious"‘develop-
ment system. A/65 is designed to assemble files from disk and produce formatted
output listings. Object code may be assembled directly to memory (Be careful

to avoid A/65 and the symbol table and Never assemble code to page zero or

szge one) or directed to the disk.

4]

W ot

1.2 USE OF A/65

4/65 is approximately 6k long and is loaded into RAM memory from the disk.

After bringing up the disk, exit to DOS and type "A/65". The assembler will load
and vegin execution. The user must then answer several questions before assembly
nay vegin. The first is the location of the symbol table. The assember will
print:

PEGASUS SOFTWARE A/65 Version 1.0
Copyright 1980 by Compas
Symbol Table Access

From= To=

"FROM" is the beginning of the symbol table and "T0" is the end of the symbol

tzble. Since each symbol requires 8 bytes, the ending address must be modulo 8.

Tnter the numbers in the normal hexadecimal fashion. Carriage return will de-

fault to all available memory. The next question asks for the source file name:
File=

Next the(s%stem asks if you want a full output listing (Y) or an errors only

listing (N):

Listing?
The nexi question asks if you want object code output:
Object Code?
If yes then whether to disk or memory:
Memory or Disk (M/D)?
If "M", it asks for offset (default is @):
Offset?

)
Hy
0
H
1o}
. de
)
4
Hy
lJ
l_J
)

If "pv, it ask

The next question asks if you want a symbol table printed:
Print Symbol Table?

If you said yes to either listing or symbol table, you're asked how many
lines per page (in hexadecimal). Default is 3B which is for 11" paper:

Lines?

It will then ask for output device # (default is console). Refer to 0365-D3
Operating System Manual. These are not always equivalent to devices as used
with Basic.

Qutput Device No.?

At this point, you're reminded to set the top of form, so that the listing
will be positicned properly on paper.
Several examples:

(1) Pegasus Software A/65 Version 1.0
Copyright (c) 1980 By COMPAS

Symbol Table Address

From=4580 To=BFFF

File=XAMPIE

Listing? Y

Object Code? Y To: Memory or Disk (M/D)? D File=XOBJCT
Print Symbol Table? Y # Lines? 3B

Output device no. 8
Set top of form

(2) Pegasus Software A/65 Version 1.0
Copyright (c) 1980 by COMPAS

Symbol Table Address

From=4580 To=BFFF

File=TEST

Listing? Y

Object Code? Y To: Memory or Disk (M/D)? M Offset: 0000
Print Symbol Table? Y # Lines? 3B

Output device no. 8

Set top of form

1-2

4 7 ATmTAMm AATT TAATTD
I ORT- \ "
. CoJLwl CCD=Z LOADER

e A/65 svstem are two object code file loaders. These
oading of the disk based object files produced by A/65 into

uded with th
113 “the 1

The loader is invoked by using the DOS (disk operating system) XQ command
followed by the name of the desired loader. Two different loaders are pro-
vided so that the user can load a file into memory either above or below the
DOS without conflicting with the loader itself. The "LOADER" program uses
memory from $317E to $3E00, and should not be used to load object code into
this arez. Similarly the "LOADR2" program uses memory from $1500 to $2200,
and will not load object code into this area properly.

The loader reports the starting address of the load sequence for verification.
This address is not necessarily the "go" address or the lowest byte of memory
used by the loaded program. It is simply the first address in the object
file. Subsequent addresses may be either higher or lower than the one report-
ed by the loader, dependent upon the original assembler source file.

CHAPTER 2

USE OF THE A/65 ASSEMBLER

2.1 OVERVIEW

The process of translating a mnemonic or symbolic form of a computer program
(scurce code) to actual processor instructions (object code) is called an
assembly, and a program which performs the translaticn is called an assemb-
ler. The symbols used and rules of association for these symbols are the
assembly language. One assembly language statement will translate into one
processor instruction.

A/65 features many powerful capabilities. The user has complete control
over where the symbol table is located in memory, how much of the listing
is generated, how many lines per page are generated, where the listing is
printed, and whether the complete text of ASCII strings are printed.

2.2 SETTING UP THE SYMBOL TABLE

'As a guideline for allocating space for the symbol table, allow eight bytes
of memory space for each uniquely defined symbol in the source code., Since
each symbol in the symbol table requires eight bytes of memory, the end of
the symbol table must always be a multiple of eight bytes from the start of
the symbol table. If the allocated symbol table area is not large enough,
thg assembly will be terminated and the message:

‘SYMBOL TABLE OVERFLOW

will be printed.

2.3 INVOKING A/65

4/65 is invoked by exiting to operating system and typing A/65. The assembler
automatically loads and executes.

2.4 A/65 EXPRESSIONS

Assembler expressions are very useful tools to facilitate programming and to
generate both readable and easily changeable code.

There are two components of Assembler expressions: elements and operators.

2-1

2.4.1 ELEMENTS

Elements may be classified into three distinct types: constants, symbols,
and the location counter.

CONSTANTS

Numeric constants may be written in several bases. The base is determined
by the type of prefix character preceding the digits. The relationship
between prefix character and base is defined in the following table:

PREFIX CHARACTER BASE
(none) 10 (Decimal)
16 (Hexadecimal)
e 8 (Octal)
% 2 (Binary)

Some example are:

0005 1000 10 .BYT $10,10,@10,%10
0005 1001 OA

0005 1002 08

0005 1003 02 '

0006 10084 AD 10 F7 LDA $F710

0007 10607 A5 1D LDA 29
0008 1009 A5 7E LDA @176
0009 100B A5 6D LDA %01101101

ASCII literal constants are enclosed in quotes, and are used to insert the
ASCII representation of character strings into memory. ‘

For exampie:
0011 100D 25 BYT "%t LUIUIMY,t

0011 100E 48 27 4D
0011 1011 27

0012 1012 A9 50 LDA #'P
0013 1014 A9 27 LDA #''!
0014 1016 A3 35 LDA #'5

Note that two quotes are needed to represent the insertion of a quote in
memory. Thus, in the last field of the .BYT directive, the first represents
a single quote, and the last closes off the string.

SYMBOLS

Symbols are names used to represent numerical values. They may be from one to
six alphanumeric characters long, but the first character must be alphabetic.
In addition, the 56 valid opcodes (listed in Table 2-1) and the reserved
symbols A,X,Y,X, and P have special meaning to the Assembler, and may not be
used as symbols.

2-2

For exampie:

0016 1018 . VARBLE =$2C

0017 1018 AB DATAT .BYT $AB,VARBLE
0017 1019 2C

0018 101A AD 18 10 LAB190 LDA DATA1l

0019 1010 A5 2C LDA VARBLE

LOCATION COUNTER

The location counter, referenced by the character "*", is a sequential counter

used by A/65 to keep track of its current position in memory, and may be
freely used in expressions by the programmer.

For example:
0021 101F 10 1F .DBY *
0022 1021 AD 21 10 LDA *

2.4.2 QPERATORS
Four arithmetic operators are provided in A/65:

Operator Operation
* Addition
- Subtraction
* Multiplication
/ Division
Evaluation of expressions proceeds strictly from left . _.ws With no

parenthetical grouping allowed; all operators have equa: precedence.

In addition, there are two special operators:

Character ' Operation
> High-Byte-Setection
< Low-Byte Selection

Operators > and < truncate a two-byte value to its high or low byte,
respectively.

For example:

0024 1024 AB HIGH -BYT >$ABCD, <*,51<HIGH-%10
0024 1025 25
0024 1026 27

0025 1027 A5 41 LDA <*+>$1AC2
0026 1029 A5 1A LDA %101+7+37+@7
0027 102B A5 11 LDA >HIGH-$401<65

Expressions which evaluate to negative values are illegal. The twos comple-
ment representation of a negative number must be expressed as an unsigned
{(preferably hexadecimal) constant (e.g., write "-1" as "$FF").

Note especially that expressions are evaluated at assembly time, not at exe-
cution time.

2.5 A/65 SOURCE STATEMENTS
Assembler source statements are comprised of four possible fields:
[label] [opcode [operand]] [;comment]

Brackets surrounding a field indicate that it is optional. Thus, although
none of the fields is mandatory, an opcode field must precede an operand
field. Input to A/65 is free form; any field may start in any column.

In particular, note that due to the reserved opcodes, the user is able to
precede labels with spaces. If no labe] is present, an opcode may be placed
in the first column.

Each field in the Program need only be separated by a single space. If the
fields are separated in this manner, A/65 will columnize the fields and
produce a readable listing. The user's program may then be stored on the
disk in a highly compressed form. :

semicolon is omitted, the comment field will not be placed in its proper
column in the listing.

2.5.1 LABELS

A labelis a symbol which, to be defined, must appear as the first field on

a line, although it may begin-in any column. Using a symbol as a label is

a way to assign the current value of the location counter to the symbol
befaore- the rest of the line is processed by the Assembler. Labels are used
with instructions as branch targets and with memory data cells for reference
in operands.

A line containing only a label is valid, so several labels may be assigned to
the same memory location by putting each on a separate line:

0028 1020 SAMET
0030 102D SAME?2
0031 102D AD 2D 10 SAME3 LDA SAME]

2.5.2 OPCODES AND OPERANDS

There are two distinct classes of assembler instructions available to the
programmer: machine instructions and assembler directives.

MACHINE INSTRUCTIONS

The 56 valid machine instruction mnemonics (listed and defined in Table 2-1)
represent the operations implemented on the 6500 family of microprocessors.
When assembled, each mnemonic generates one byte of machine code, the actual
bit pattern depending upon both the operation specified in the opcode field
and the addressing mode determined from the operand field. The operand field
may generate one or two bytes of address.

2-4

Operand Addressing Modes

ABSOLUTE ADDRESSING. The absolute addressing mode. is the most common in
concept; the data following the machine code is treated as the address of
a memory location containing the actual data to be processed during the
instruction step. This address is stored in reverse order-as Tow-byte,
then high-byte-to increase processing efficiency during execution time.

For exampile:

0066 1050 PIA =$4C1F

0067 1050 LATCH =$4DE2

0068 1050 BUFF1 =$54B0

0069 1050 START =$A000

0070 1050 EXTRTN =3$C80

0071 1050 2C 1F 4c¢ BIT - PIA

0072. 1053 ¢CD D7 (2 CMP $C2D7
0073 1056 CE BA 54 DEC BUFF1+10
0074 1059 4D BO 54 EOR BUFF1
0075 105C 4C 00 Ao JMP START
0076 105F 20 00 c8 JSR EXTRIN
0079 1062 AD S5F p§ LBA $1101100001011111
0078 1065 6E CF 11 - ROR $11CF
0079 1068 ED CF 54 SBC BUFF1+3$1F
0080 106B 8D E2 4D STA LATCH

* Instructions legal only in the implied addressing mode.

TABLE 2.1 6500 MICROPROCESSOR INSTRUCTION SET-ALPHABETIC SEQUENCE

ADC

AND
ASL

BCC
BCS
BEQ
BIT

BMI
BNE
BPL
BRK
BVC
BVS

CLC
CLD
CLI
CLv
CMP

CPX
CPY

DEC _

DEX
DEY

EOR

INC
INX
INY

JMP

JSR

Add Memory to Accumulator
with Carry

AND Memory with Accumulator

Shift Left One Bit (Memory
ar Accumulator)

Branch on Carry Clear
Branch on Carry Set
Branch on Result Zero

Test Bits in Memory with
Accumulator

Branch on Result Minus
Branch on Result Not Zero
Branch on Result Plus
Force Break

Branch on Overflow Clear
Branch on Overflow Set

Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit
Clear Overflow Falg

Compare Memory and
Accumulator

Compare Memory and Index X
Compare Memory and Index Y

Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One

Exclusive-0R Memory with
Accumulator

Increment Memory by One
Increment Index X by One
Increment Index Y by One

Jump to New Location

Jump to New Location Saving
Return Address
2-6

LDA

LDX
LDY
LSR

‘NOP

ORA

PHA
PHP
PLA
PLP

ROL

ROR

RTI
RTS

SBC

SEC
SED
SEI
STA
STX
STY

TAX
TAY
TSX
TXA
TXS

TYA

Load Accumulator with Memory

Load Index X with Memory
Load Index Y with Memory

Shift Right One Bit (Memory
or Accumulator)

No Operation
OR Memory with Accumulator

Push Accumulator on Stack

Push Processor Status on Stack
Pull Accumulator from Stack

Pull Processor Status from Stack

Rotate One Bit Left (Memory or
Accumulator)

Rotate One Bit Right (Memory
or Accumulator)

Return from Interrupt
Return from Subroutine

Subtract Memory from Accumulator
with Borrow

Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status
Store Accumulator in Memory
Store Index X in Memory
Store Index Y in Memory

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index
Transfer Index X to Accumulator

Transfer Index X to Stack
Pointer

Transfer Index Y to Accumulator

PAGE ZERO ADDRESSING. In practice, the zero page addressing mode (iden-
tical in concept to absolute addressing) is the most frequently used. This
allows the expression of the instruction to be two bytes instead of three;
the low byte of the data address is taken from memory, and the high byte is
assumed to be zero. All instructions legal in absolute mode are also legal
in zero page mode with the exception of the JMP and JSR instructions (see
Table 2-1); A/65 automatically generates the shortest possible code:

It is good programming practice to reserve page zero (memory locations 0-255)
for declaration of variables.

For example:

0083 106E MODE =806

0084 106E KEY =$0C

0085 106E COUNTR =$37

0086 106t TTYBUF =$6B

0087 106E 65 37 ADC . COUNTR
0088 1070 24 7A BIT $7A
0089 1072 C4 Q06 CPY MODE
0090 1074 E6 38 INC COUNTR+1
0091 1076 A6 6B LDX TTYBUF
0092 1078 46 9A LSR $21+@171
0093 107A 05 OC ORA KEY
0094 107C 86 AA STX TTYBUF+$3F

IMMEDIATE ADDRESSING. The immediate mode of addressing is coded by the
character "#" followed by a byte expression; the code inserted into memory
is treated as the data to be operated upon according to the machine code.

For example:

0059 1046 DOLLAR =$24

0060 1046 69 03 LAB1 ADC #3

0061 1048 29 8BS AND #$10110101
0062 104A EO 24 CPX #DOLLAR
0063 104C A9 45 LDA #'E

0064 104E A0 46 Loy #<LABI

IMPLIED ADDRESSING. Twenty-five of the fifty-six instructions, legal only
in the implied addressing mode, require no operand-their execution may be
completed with no other information than that contained in the opcode.
These instructions are preceded by a * in Table 2-1.

For example:

0041 1033 Q0 BRK
0042 1034 D8 CLD
0043 1035 (8 INY
0044 1036 EA NOP
0045 1037 68 PLA
0046 1038 60 RTS
0047 1039 &A TXA

2-7

ACCOMULATOR ADDRESSING. Instructions implementing the four shift operations
nave, in addition to addressing modes referencing memory, a special mode
#nich allows manipulation of the accumulator. Usage of this. mode similar

to implied addressing, causes generation of a single byte of machine code.

For example:

0049 103A OA ASL A
0050 103B 4A LSR A
0051 103C 2A ROL A
0052 103D 6A ROR A

RELATIVE ADDRESSING. There are eight conditional branch instructions avail-
able to the programmer; normally these immediately follow load, compare,
arithmetic, and shift instructions. Branch instructions uniquely use the
relative addressing mode. The branch address is a one-byte positive or nega-
tive offset, expressed in twos complement notation, from the run-time program
counter. At the time the branch address calculation is made, the program
counter points to the first memory location beyond the branch instruction code.
Hence, the one-byte offset limits access to branch addresses with 129 bytes
forward and 126 bytes backward from the beginning of the branch code. (A
one-byte twos complement number is limited to the range -128 to 127 inclusive.)

An error will be flagged at assembly time if the branch target lies out-of-
bounds for relative addressing.

For example:

0054 103t 90 80 BCC *-126
0055 1050 FO FE HERE BEQ HERE
0056 1042 30 FC BMI *-2

0057 1044 70 7F BVS *+129

INDEXED ADDRESSING. Indexed addressing (possible with index registers X or
Y) facilitates certain types of table processing. The address given as the
operand is treated as the base address, to which the contents of either the
X or the Y register is added to arrive at the actual address of the memory
Jocation contining the data to be operated upon. All instructions imple-
menting absolute indexed addressing with the X register also allow the same
addressing in the page zero mode; several instructions (LDX, LDY, STX, and
STY) allow zero page indexed addressing with the Y register.

For example:

0096 107t ARRAY =3508B

0097 107t NUMBUF =350

0098 107t TABLE =5%22C0

0099 107E 79 4F 00 ADC NUMBUF-1,Y
0100 1081 DD CO 22 CMP TABLE,X

0101 1084 D6 0B DEC ARRAY,X

0102 1086 5SD CC 22 EOR TABLE+$C,X
0103 1089 B6 (B LDX ARRAY,Y

0104 1088 36 22 ROL >TABLE,X
0105 108D 96 8F STX NUMBUF+$3F,Y

2-8

INDIRECT ADDRESSING.

The concept of indirect addressing constitutes a Tevel

of complexity beyond that of absolute addressing. The operand address
references not one memory location containing data, but a sequence of two

memory locations containing the address-stored in]ow-
of the location containing the actual data to be processed. True indirect

addressing is offered only with the JMP instruction; otherwise, indexed

indirect addressing with the X register and indirect
the Y register are implemented.
address is computed before the indirect is taken;
is reversed for indirect indexed addressing.
addressing takes place when the index register contains zero.

the order of evaluation

Note that normal indirect

uses an absolute-length (two-byte) operand; others require the operand
address to lie in page zero between 0 and 254 inclusive.

For example:

0107
0108
0109
0110
0111
0112
0113
0114
0115
0116

108F
108F
108F
108F
108F
1091
1093
1096
1098
109A

A/65 DIRECTIVES

There are nine assembler directives; these are used to set symbol and loca-
tion counter values (

and assembler listing format (.PAGE, .SKIP).

Q2
7t
09
57
02
57

00

INDADR =%02
CURSOR =$57
OLDPTR =$7E
NEXT =3%D9
AND
CMP
JMP
LDA
SBC
STA

(INDADR, X)
(OLDPTR),Y
(NEXT)

(CURSOR), Y
gINDADR,X;

'(CURSOR, X

=), reserve and initialize memory locations (.BYTE,
.WORD, .DBYTE), and control both assembler input/output (.0PT,.FILE, .END)

A1l may be considered as

assembly-time instructions, rather than as execution-time instructions.

Equate Directive

The equat ("=") directive assigns the value of an expression containing no

forward references (symbcls defined in a following section of code) to either

a8 symbol or the location counter:

0118
0119
0120
0121

A label used with an equate directive which increments the location counter
will reserve work area memory locations; this is especially useful when con-

109C
1800
1800
1800

TABLE2
WRDPTR
NUMPTR

secutively allocating uninitialized

0124
0125
0126
0127
Q128

1800
0000
0001
0003
0048

EQT

EQTADR
BUFFER
ENDFLG

*=$1800
=3C800
=$2A
=WRDPTR+2

;EQUATE DIRECTIVE
; ASSIGN SYMBOLS

memory at the beginning of a program:

F=()
LES 2|
ki D
=+72
F=r4]

1
0

;EQUATE DIRECTIVE
; RESERVE MEMORY

byte, high-byte order-

indexed addressing with
For indexed indirect addressing, the indexed

The JMP indirect

Symbols assigned one-byte values may be programmed as assembler constants-
assembly-time values, used consistently throughout a program, which may be
cnanged at a later time when the program is reassembled. Source code is
designed so that alteration simply requires reassignment of the correspond-
ing assembler constants. This is considered good programming practice and
is a much better alternative to changing each constant as it occurs through-
out a program.

0130 004C *=() +EQUATE DIRECTIVE
0131 0000 STRTCH =$28 ; ASSEMBLER CONSTANTS
0132 0000 ENDCH =$%29

0133 0000 DELIM =$2C

0134 0000 LOWCH =$%41

0135 0000 HIGHCH =$5A

0136 0000 KEYLEN =4

0137 0000 BUFLEN =72

.BYTE Directive

The .BYTE directive initializes byte memory locations. Multipie arguments,
separated by commas, may be specified in a single .BYTE command to load
consecutive memory locations; ejther ASCII strings or expressions evaluating

to an eight-bit value are legal. ASCII strings in .BYTE directives must not
generate more than 20 characters.

0141 1800 41 42 ASCII .BYT 'ABCD','EFGH','JOE''S'
0141 1802 43 44

0141 1804 45 46

0141 1806 47 48

0141 1808 4A 4F

0141 180A 45 27 53

0142 180D 0O .BYT <ASCII,>ASCII+2-%1,<*+>*,2
0142 180E 19

0142 180F 27

0142 1810 02

Note the use of two quotes within an ASCII string to insert a single quote
into memory.

.WORD Directive

The .WORD directive is very useful in constructing jump tables and initial-
izing pointers. An operand expression is evaluated as a two-byte address
and is stored in low-byte, high-byte sequence, the order in which the
microprocessor fetches addresses from memory. As with .BYTE, multiple
operand fields, separated by commas, are allowed:

Q144 1817 04 (8 JMPTBL .WOR $C804,3E4B9,3F77A
0144 1813 B9 E4

0144 1815 7A F7
0145 1817 02 00 .WOR $2,<JMPTBL,>JMPTBL,*,@6371
0145 1819 11 00
0145 1818 18 00
0145 181D 1D 18
0145 181F F9 OC

PODDa]

ve is used to "1link" source files together. Often source files
nan may oe edited in available memory. If this happens, a JFILE
command may be placed at the end of each block of code to indiecate the next
file name. The general form is:

JFIIE XOXXX
wnere "XXXXXX" is any valid file name. The 1ast statement in the file must be:
END XXXXXX
wnere "YXX{XXX" is the name of tne first file in the chain.
LEND Directive

This must be the last statement in the program and indicates the end of source
code input.

2-10A

.DBYTE Directive

It if is desired fb generate a sixteen-bit expression value in normal high-
byte, low-byte order, the .DBYTE assembler directive must be used. Its syn-
tax rules are the same as those for .WORD:

0148 1821 C8 04 DATA .DBY $CBO4,$E4B9,$F77A

0148 1823 E4 B9

0148 1825 F7 7A

0145 1827 00 OE .DBY $E,<DATA,>DATA,*,%010110111101
0149 1829 00 21

0149 1828 00 18

0129 182D 18 2D

0149 182F 05 BD

.PAGE Directive

The .PAGE directive (applicable to the assembler source 1isting) is used bath
to cause a page eject (top-of-form) and to generate or alter the title printed
at the top of the new page. A title may be specified as an ASCII string in
the operand field, and it may be cleared with a string of one or more blanks.
Absence of an operand will cause the title printed on the previous page, if
any, to be repeated at the top of the new page. This command is not printed
as entered in the source code-only the results appear. For example, entry of:

.PAGE 'ORIGINAL TITLE'
.PAGE

.PAGE 'NEW TITLE'
.PAGE ' !

would cause the fllowing to appear at the top of each page:

ORIGINAL TITLE. PAGE 0001
LINE # LOC CODE LINE
ORIGINAL TITLE.PAGE 0002
LINE # LOC CODE LINE
NEW TITLE. PAGE 0003
LINE # LOC CODE LINE
..... .PAGE 0004

LINE # LOC CODE LINE

SKIP Directive

Blank Tines, up to the end of the current page, may be inserted in the program
listing with the .SKIP directive. If no operand is given, one line will be
skipped; otherwise, the number of lines on the current page corresponding

to the value of the operand expression will be left blank. Like .PAGE, this
command does not appear as input:

*=()
.SKIP

CURSCOR F=*42

EQT *=*42
.SKIP 2

TWO =£0T

causes the following listings to be printed:

0002 0000 *=0

0004 Q000 CURSOR *=%x42
0005 0002 EOT *=%42
0007 0004 TWO =EQT

.OPT Directive

The four
options of the .OPT directive control generation of output files and expan-

sion of ASCII strings in .BYTE directives. These options are selected by
specifying: :

.OPT LIST, GENERATE, ERRORS, SYMBOL
and are eliminated by coding:
.OPT NOLIST, NOGENERATE, NOERRORS, NOSYMBOL

Since only the first three characters of each option are scanned,’ the
following may be written:

.OPT LIS,GEN,ERR,SYM
.OPT NOL,NOG,NOE,NOS

The four options control aspects of the listings as clarified below:

1. LIST [NOLIST] controls generation of the program listing, which contains
assembled source input, generated cbject code, errors, and warnings.

2. GENERATE [NOGENERATE] controls the printing of object code for ASCII
strings in the .BYTE directive. Only code for the first two
characters is listed if NOG is specified; otherwise, the whole
lTiteral will be expanded. '

3. ERRORS [NOERRORS] controls the listing of only erroneous program
source lines together with the respective messages generated. Fatal
assembler table overflows are also messaged in this file.

4. SYMBOL [NOSYMBOL] controls the 1isting of the symbol table at the end
of the assembly. Also, it controls retaining the symbol table
memory for subsequent use in disassembling instructions during de-
bugging traces.

2.5.3 COMMENTS

Comments may be freely inserted into source code following the last field on
a line. If preceded by an opcode (and possibly operand) field, the comment
may optionally begin with a semicolon(;). Otherwise, the semicolon is
necessary. A comment may be the only field on a line.

For example:

0033 1030 ; COMMENTS MAY EXIST ALONE
0034 1030 ;ANYWHERE ON A LINE
0035 1030 L1 s THEY MAY FOLLOW LABELS
0036 1030 L2 =3%3AB7 AFTER EQUATES AND
0037 1030 A9 1A LDA #3$1A OPERANDS A SEMICOLON
0038 1032 OF .BYT SF IS OPTIONAL

2.6 OUTPUT

This section describes the two output files generated by A/65-the Tisting and
memory files. The listing file contains the program listing and symbol table.
The memory file contains the object code produced by the assembly. The
existence of each file js controlled by the IFLAGS variable or by the .QPT
directive.

The program listing contains, for each source statement line, the corres-
ponding line number (under the heading LINE #), the hexadecimal location
counter (LOC), the one, two, or three bytes of generated code (CODE), and the
- image of the source code input to A/65 (LINE). 1In the upper left corner of
" each page is the page heading specified as the ASCII Titeral operand of a
-PAGE assembler directive, followed by the page number. Error and warning
messages appear after erroneous statements. %For an explanation of error
codes, see Appendix A). At the end of the porgram is a count of the errors
and warnings found during the assembly.

The symbol table contains an alphabetically sorted list of all symbols used
in the program, and the value of each symbol,

APPENDIX A - Summary of Error Codes

N — O W 0 ~N OV B W NN~ O W
. N .

00 N Oy N & W N
e s e 6 e s e e

UNDEFINED SYMBOL

LABEL PREVIOUSLY DEFINED

ILLEGAL OR'MISSING OPCODE

ADDRESS NOT VALID

ACCUMULATOR MODE NOT ALLOWED

NOT USED _

RAN QFF END OF CARD

LABEL DOESN'T BEGIN WITH ALPHABETIC CHAR.
LABEL GREATER THAN SIX CHARACTERS

LABEL OR OPCODE CONTAINS NON-ALPHANUMERIC
FORWARD REFERENCE IN EQUATE OR ORG '
INVALID INDEX - MUST BE X OR Y

INVALID EXPRESSION

UNDEFINED ASSEMBLER DIRECTIVE

NOT USED

NOT USED

RELATIVE BRANCH OUT OF RANGE

ILLEGAL OPERAND TYPE FOR THIS INSTRUCTION
QUT OF BOUNDS ON INDIRECT ADDRESSING
A,X,Y,X, AND P ARE RESERVED LABELS
PROGRAM COUNTER NEGATIVE -~ RESET TO O
SYMBOL TABLE OVERFLOW

SYNTAX ERROR MESSAGES

Descriptive error messages accompanying the statement in error are given in
the listing file. The following is an annotated, numerically-ordered list
of all syntax error messages. The following error messages generate only
partial code; leaving undefined results where code cannot be generated.:

** UNDEFINED SYMBOL (Error #1)

The assembler has found a symbol in an operand expression which 1S nowhere
defined (given a value by ap earing either as a labe] Or as the destination
field of an equate directive? in the source code. This error will also
occur if a reserved name (A, X, Y, S, or P) is referenced ads a symbol in an
éxpression; these names are not defined in the symbol table when the pro-
grammer attempts to assign values to them.

Check for use of reserved symbols, misspelled labels, or missing labels.
** LABEL PREVIOUSLY DEFINED (Error.#z)

The first field on the line, interpreted as a symbol, has been found already
defined with a value in the symbol table. This symbol has been associated
with a valye by appearing as a label or as the destination field of an
equate expression somewhere previously in the source code. Redefinition of
symbols is not allowed. This error may also occur if a page zero variable
is referenced before it is defined.

Check for a misspelled label or an attempt to use a labe] for two different
purposes.

** ILLEGAL OR MISSING OPCODE (Error #3)

The assembler has found a line containing a label followed by an expression
which it tried to interpret as an instruction. If the field following a
label begins with a semicolon (";") it is treated as a comment; otherwise,
either an assembler directive or one of the 56 instruction mnemonics is
expected.

Check for: twg or more labels defined on the same line; a label followed
by a misspelled instruction, a comment without a Teading semicolon, or an
operand field; a comment Tine not preceded by a semicolon.

** ADDRESS NOT VALID (Error #4)

An address referenced in an instruction or in one of the assembler directives
(.BYTE, -WORD, or .DBYTE) is invalid. An instruction operand value generated

by the assembler must be greater than or equal to zero and less than or equal

to hexadecimal FFFF (1 bytes iong). (This excludes relative branches, which

are computed and messaged separately.) If the operand expression generates

more than 2 bytes of code or less than Zero, this error message will be printed.
For a .BYTE directive each operand is Tlimited to gne byte, and for a .WORD

or .DBYTE each operand is limited to two bytes. A1l values must be greater

A-2

Check the values of symbols used in the operand field (see the symbol table
for this information).

** ACCUMULATOR MODE NOT ALLOWED (Error #5)

Following a legal instruction mnemonic and one or more spaces is the letter
"A" followed by 1 or more spaces (denoting the accumulator addressing mode).
The assembler tried to use the accumulator as the operand; however, the
instruction in the statement is one which does not allow reference to the
accumulator.

Either check for a statement (illegally) labelled A to which this state-
ment is referencing or, if trying to reference the accumulator, look up the
valid addressing modes for the mnemonic used.

** RAN OFF END OF CARD (Error #7)

This error message occurs when the assembler is looking for a needed field
and runs off the end of the card (line image) before the field is found.

The following should be checked for: a valid opcode field not followed by
a necessary operand field; an-instruction mnemonic that was thought to be -
legal for implied addressing, but which in fact needs an operand; an ASCII
string that is missing the closing quote (make sure any embedded quotes are
doubled; to insert a gquote in a string at the end, there must be 3 quotes

- 2 for the embedded quote and one to close off the string); a comma at the
end of an operand field, indicating either more operands or an index to
follow.

** [ABEL DOESN'T BEGIN WITH ALPHABETIC CHARACTER (Error #8)

The first non-blank field, being neither a comment nor a valid instruction,
is assumed to be a label. However, the first character of the field begins
with a numeric character (0-9), violating the rules of symbol construction.

Check for an unlabelled statement with only an operand field that starts
with a number. Also check for an illegally labeled instruction.

** | ABEL GREATER THAN SIX CHARACTERS (Error #9)

The first field on the line is a string containing more than six characters.
Not being preceded by a semicolon, denoting a comment, it is assumed to be
a symbol whose length limit has been exceeded.

Check for a label that is too long, either lack of spacing or an invalid
separator between a label and an opcode, or a comment line with a long first
word that doesn't begin with a semicolon.

** | ABEL OR OPCODE CONTAINS NON-ALPHANUMERIC (Error #10)

The label or opcode field on a line is at most six characters long, but it
(i1legally) contains a character which is not alphanumeric. Note that symbols
contain one to six alphanumeric characters, the 56 machine instruction
mnemonics contain three alphabetic characters each, and assembler directives,
following the initial period, are scanned for three alphabetic characters.

Check for the following: one or two labels on a line, one of which contains
an invalid character; an instruction which either contains an illegal
character or is not separated by a blank from its operand field; a comment,
either following a label or standing alone, which is not preceded by semi-
colon.

** FORWARD REFERENCE IN EQUATE OR ORG (Error #11)

The expression on the right side of an equals sign contains a symbol that
hasn't been defined previously. One of the operations of the assembler is
to evaluate expressions and assign addresses (values) to both symbols and
the location counter. Processing of input values is done sequentially,
which means that all symbols fall into two classes -- those already defined
and those not previously encountered. As it parses source code, the asse-
mbler assigns defined symbols and builds a table of undefined but referenced
symbols; then, when a previously referenced symbol is defined, its value is
substituted into the table. The cross assembler processes all of the input
statements a second time, inserting values for all expressions -- even those
which are "referenced forward" to a subsequently defined symbol.

Due to the sequential processing of the assembler and the dependence of the
value of the location counter on symbols, the assembler cannot process a
forward reference in this type of statement. All expressions with symbols
that appear on the right side of any equals sign must refer only to pre-
viously defined symbols.

This error may also mean that the symbol referenced is not defined at all
in the program, in which case the cure is the same as for undefined varijables.

** INVALID INDEX - MUST BE X OR Y (Error #12)

A legal operand expressions follows an opcode; following this expression is
a comma (denoting indexed addressing) and an invalid string where either X
or Y was expected. This error will be given whether an indexed addressing
mode is legal for the corresponding instruction mnemonic or not.

** INVALID EXPRESSION (Error #13)

While evaluating an expression, the assembler found a character it couldn't
interpret. This can occur if the operand expression contains illegal or
misplaced operators or invalid constants or symbols.

Check the operand field to make sure expression syntax is legal.

** UNDEFINED ASSEMBLER DIRECTIVE (Error #14)

If a period is the first character in a non-blank field, the assembler
interprets the following three characters as an assembler directive. Either
an invalid directive has been found or the first three characters of one of
the options in the .OPT directive are uninterpretable.

Check for a misspelled directive, a period at the beginning of a field that
is not a directive, or an illegal option as a .OPT operand.

A-4

~x RELATIVE BRANCH OUT OF RANGE (Error #17)

A1l of the conditional branch instructions are assembled into 2 bytes of
code. One byte is for the machine code, and the other is for the branch
address offset. To allow both forward and backward branches, the offset
is in two's-complement representation; it is added to the address of the

beginning of the next ihstruction to compute the new run-time program

counter value. If the value of the offset is from O to 127 the branch is
forward; if the value is from 128 to 255 (interpreted as from -128 to -1)
the branch is backward. Therefore, a branch instruction can only branch
either forward 127 bytes or backward 128 bytes relative to the beginning
of the next instruction. If an attempt is made to branch further than
these limits, this error message is printed.

|| EGAL OPERAND TYPE FOR THIS INSTRUCTION (Error #18)

After finding an instruction mnemonic that does not allow implied address-
ing, the assembler passes to the operand field (the non-blank field fol-
lowing the mnemonic) and determines what type of operand it is (indexed,
absolute, etc.). If the type of operand found is not valid for the
instruction, this error message is printed.

Check to see which operand types are allowed for the mnemonic and make
sure the form of the operand type is correct.

** QUT OF BOUNDS ON INDIRECT ADDRESSING (Error #19)

An indirect address is recognized as such by the parentheses that surround
it in the operand field of an instruction menmonic. Since indirects require
two bytes of page zero memory, the address referencing this area must be
less than or equal to 254. (Note especially that an indirect address of

255 is illegal - this would cause the two-byte area to fall partially out-
side of page zero). This error will only occur if the operand field is in
correct form (i.e., an index register follows the address).

To correct this, the address field must refer to page zero memory between
0 and 254 inclusive.

** A, X, Y, S, AND P ARE RESERVED LABELS (Error #20)

The programmer has attempted to define one of the five reserved names

(A, S, Y, S, and P) as a symbol. These names have special meaning to the
assembler and cannot be used in this manner. The symbol is not defined
and, if referenced elsewhere in the program, will appear in the symboil
table as an undefined variable. Consequently, error messages will be
printed as if the symbol were never declared.

A-5

ippendix B. A/65 Memory Map

U & 4
N -
(W} [JJ
o O
o O

n
'x_j
~]
(00

)
N
’IJ
~)
0

$3A79
$L57A

A/65 uses all of page zero memory.

Reserved for the hardware stack.

Start of A/65.

End of A/65.

Start of DOS (disk operating system).

End of DOS.

Start of A/65 Source file disk buffer.
(designated as page @ and 1 swap buffer by 0SI)
Start of A/65 object code disk buffer.

Start of free memory - (symbol table).

