FBASIC V1.1
Copyright(c) 1980,81 by Pegasus Software

Pegasus Software
P.O. Box 10014
Honolulu, Hawaii 96816

Copyright (C) 198%@,81 by Pegasus Software

All rights reserved

Mo part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form oar by
any means, electronic, mechanical, magretic, optical,
chemical , manual or atherwise, without the prior witten
permission of Fegasus Software, F.0. Rox TEEi g, Homoluluw,
Hawaii, 246B1&.

Fegazus Software makes no representations or warranties with
rezpect to the contents herect and specifically dizclaims
any implied warranties or merchantability or fitness for ary
particular purpose. Further, Fegasus Software reserves the
right to revise this publication and to make changess in the
content hereof without obligation of Fegasus Software to
notify any person of such revision or changes.

fony

TABLE OF CONTENTS

Owarview o & & v v 4 b e e v e e e s
How to write and compils a program o
Compile-Time Options . .« « & « o . o . . .
Funriing a compiled program o . . . 0 . - o . .

0o & 0

Variables o 4 e . . .
Exvpressions s e e e e e e e e 4 e e

g

ASC Functiaon " s 4 e w4 s 4 s e e a
8
FEEFE . . . + + + « v - & & .
S

i

-
2
.
[
®
[
.
e e
e

FLOW OF COMTROL

0 L2
GOSUE o v w i e e e e e e . - L2
RETURNM Tow e m s am w4 e e e u 1z
IF = THEN o o o .o o o o' o - 1z

OM GOTO/GE0OS5UE & . o o o o . v v o a e ... 14
o LS

FOR = MEXT . . . « + & & o 4o v v 4 u e e 153
EMD & o s s s e i i h e e e e e e 1&

e
INFUTAOUTPUT

L .
FRINT . o o s v 4 v a w a e e e e e e e . 18

OISk ! e e m s m a s e s e e e 4 . . ZE
oim = s e e e 4w s s e e e a e e wa 21
FOFKE v v v e v e e e e e e e e e e e e . 22
1 22

Direct register access s s e e a4 = A - - e 2%
Memary USage . . . o . . s 4 r e e e e e . 25
Fezerved words . . & 4 4 0 v e e e e e . =259
FEASIC versus 051 BASIC " e e m s a w e s e a 25
Btilities T 28

Listinm@s . . & 4 i 4 i e e a w e e e e wa . F

()

OVERVIEW

The Fegasus Software FEASIC compiler is a complete language
system designed to produce fast efficient machine code.

FEASIC accepts a special subset of the Microsoft version of
HRSIC, especially well suited to systems level programming.
Many extensicns and slight variations have been included +to
take better advanrtage of the machine Ffacilitises awvailable,
and to afford the user oreater flexibilit..

fegasus Software will offer continuing support for FHRASIC.
Updates with additional features will be made available +
reglrstered FHASICD license holders as they are developed.

s

FRAEIC provides & kool Lhat programners well versad in BASIC
can use to produce softwarse that would otherwise reguire
aszembliy language.

A working knowledge of O0BI/Microsoft BASIC is recommended in
order to take full advantage of this marnuasl.

HOW TO WRITE AND COMPILE aN FBASIC PROGRAM

FEASIL has been designed to be used with the 0SI interpreter
during development of programs in order to simplifty the
transiftion Ffrom interproter to compiler, and to allow
limited tesiing in the interpretive mode.

You first create youwr pragram source using the Microsoft
BASIC editor supplied with vour 0381 svstem. I+ wvou da not
use any of FEASIC s special featuwres, a&and work carefully
within the integer subset you can test-run your program with
Microsoft BASIC before compiling it.

After creating yow program save it to a disk filse. Exit
ERSIC, and invoke the compiler with the command:

AEYXR FBASIC

bk operating system will then loed and run FBASIC.
e following message shouwld be displaved at the ron=sole:
| =] = :

FEREASID Compiler Version #.x
Copyright 1984,81 by Pegasus Software

Follawing this the compiler will print a greater than svmbol
() and pause for input. The command line intsrpreter is
similar in syntax to that used with manv of the utilities
available under the Bell Labs UNIX svsteam.

Minimally a source fils name must be specified. The input

*PHRED
will cause the svstem to compile the source file PHRED and
List any errors to the console. Mo obiect code will bhe
praduced. To snable the various compile-time options they
must be flagged on the same inpub lipe.

These options are signalled by & dash oF mifus =ign L=}
followed by a letter. To specifvy an object File which the
compiler can use to store the machine code it produces: the
- option should be used. Thersefore

*PHRED —O TEST

instructs the compiler to read source from PHRED and write
whe rasulting object code to TEST. With the -0 option, the
compller assumes The file mame 1= to fFollow. The order in
which input parameters are eniersed is otherwiss unimportant.

+—0 TEST PHRED

is =quivalent to the previous example. The =yvstem
the available options if a =single dash (-] is ente

4

A disk drive may be specified along with esach file rmams it
TECESSSAry. I this sxample

*B:PHRED —0O A:TEST
the file named FHRED is to be found opn drive 8 and TEST s
to be found om deive A T+ the compiler was involked £rmm
the A drive then the & specifier for TEST iz not necessary.

COMPILE-TIME OPTIDNS

FEASIC supports a list of options which may be enabled as
desired at compile-time. These aptions are specified on the
same input line as the file names to be accessed 40 the
compilation. Each option is designatad by & dash o minus

sign followed by a letter. Mote that & =sowop File is
always required to affect a compilation. In the examples
Ehat follow SOURCE will be used as bhe soucrcs f1ls name.

Alzo note bthat the various sptions may be sntesred at Ehe
command lins in any order, glanks are simply ignored, and
all input i3 converted to upper—casso.

-0
Usad to specify a file for the obiect code produced by the
compiler. [instructs the compiler to use the name Lhat

follows as the output file mame.

~SOURCE -0 _OBJECT

-
This sption causes the compil Ln generats code compatible
with tThe 05-4550 acperating It adijusts i1nput and

output calls to suite that svs Nts. It also
Cauzas The zeroe page and stack memory o be swapped in and
out on entering and returning from the compil code s=o that
it omay function as an adijunct o BASIC. and i (=1

compiler to report DISK! statements as syntax errors since
they are not applicable with the 435U system.

~SOURCE —0 OBJECT =U
With this option enabled the compiler setzs its defaul

starting code address to SLE0E, This alliows the code to b
marged with a &3 BASIC file.

Lh

—L

This option causes the compiler to list the line rumbers of
the source program as they are encountered, along with the
memory address of the object code produced for each line.
This is useful for calculating the amount of code produced
for each line and Ffor calling compiled subroutines $rom
othar programs. & line address so reported should not be
considered a valid entry point unless it is reforenced (¥ A
BOTY or zimilar stateasnt within the same program.

*SOURCE —L

=
This ogption causes the compiler o sort its svmbol table and
list it to the console at the =nd of & compilation. It
lists all the non-zubscripted variables used along with
their absolute memorv addresses.

*SOURCE =S5
-C

This option allows the starting code address to be s=et to
something other than the default (3TI17E for &5D, $&606E for
S5 . The compiler sxpects to finfd he address inm
hexidecimal {following the -C.

»SOURCE —0 DOBRJECT —-C_Eg@ea

—H

This option causes the 0S-45D five byvte header to be amitied
from the ocutput file. Since the header iz only necessary
for the LOAD, X&, and RUN commands its omision can simplify
other techniguss Ffor loading compiled modules. Az an
example, 1+ the code is compiled for address IEGEHFD lusing
the -C option! to call 1t into memorv st that address the
statement would be something like this:

DIZK!"CA DFFB=23,1"

The address has been adjusted for the five byh header
(REMEe-3). By using the -H option at comoile-time +his
adijustment is wunnecessary. Therefore if the orogram were
conpiled like thiss

*SOURCE -0 OBJECT -C E@@6 —H

then to call the code in to memory at 3ESGE would reocuire
something liks this:

DISK!"Chk E@gd=28,1"

-

This option causes the compiler o Dause o Wait wheEn an
2rror 1s encounterad. This iz useful to kesp from missing
srror messages as the compiler procssds with & compilation.
AtLer pausing at an srror the compiler can be instructsed +o
continue on by pressing RETURM, or the compilation mav be
aborted by pressing Control-0O.

~-E

Causes an exit ko the operating system without compilation.

~J

RUNMING & COMFPILED PROGRAM

Atter sucecessfully compiling a program with the default
start address of $3I17E. it may be invoked from the ocoerating
svstem by tvping:

AEXl filename

Odbject files produced by the compiler can be used along with
the BASIC interpreter. Thi= allows wou to fTake better
adwvantage of =ach systems capabilities.

To utilize this feature, a program is first compiled in the
normal fashion. The BASIC interpreter is then invaoked, and
the compiled program loaded in the zame manner as a standard
BASIC socurce fila.

At this point 1t will appear that no program is oiresenty the
LIST command will show nothing. The compiled groogram is
resicent at 83172, S has caused BAETC Lo adjust 1t

o
work—space pointers above i1tself via the file header.
A standard BAETC program may now be tyvped in, or loaded from
the indirect fFile. At any poimt where the object modules is
to be called the USSR function may be wsed., or just includse
the following RBASIC statement:

DISK !GO 3

L

LTEY

This will cause the compiled program to be exscuted. Control
will then be returned toe the calling program when an END
statement is encountered. & hybrid program created in this
way can be storsed on disk with the PUT comomand, and fhen
execuited as necessary with the usuals:

HEUb "filensme”

1

r i

Az an sxample of this facility see the DIR proogram included
with fthe FEASIC syvetem. It may be run fraom EBASIC in the
normal fashion, or from the operating systam with The A
command.

MOTE: A compiled program does not require the 081 BASIC
interpreter to be resident at runtime.

VARIABLES

Variable names are of the same form as those accepted by the
051 interpreter. That is, an upper-—case lstter followed by
feEro or more upper-case letters or digits. Cnly the first 2

characters are significant. Therefore the variable names:
Py FMAME rAk

are reterenced as the same variable bv the compiler. [

percent sign following this alpha-numeric string (variable

name! as used to flag integer variables for the interpreter,
iz acceptable. Cther wvalid variabls names are:

2] Al AR TRUE FALLSEX

NOTE: Yariable names must rot contain reserved words:
gzpecially troublesome (g2asy to overlook) arse TO, aF, ST,
LET, LEM, and EMD.

EXPRESSICNS

An expression, is a list of one or more arguments couplad
with arithmetic and/or logical operators which evaluate to a
pumEric value.

FBASIC accepts the following operators, listed in order of
precedence, from highest to lowest:

{ 3

Unary minus

4 ! MO

+ -

~MoT
&b
O

This precedence pertains to the order in which the wvarious
opetrations are evaluated in an esupression containing more
than one operator. I+ AN eqHpressian is compossd of
aperations of equal prescedence then evaluation occurs from
left to right. The relational operations svaluate to one of
two values; @ (falsel, or &3575 (true). &= an =xwample, bhe
expression:

i S
will return the

In conditiomal
value is regarded as t

iz not egqual o 5.

— THEM any non—-Teroc

e

Londitionals may be mixed with arithmetic operators. As an
gxample the following are two wavs of setting & "flag"
variable according to a certain conditions

FLAG=

a0

IF Cx=5 aND B >22 THEM FLAG=1

]

FLAG = C»=5 AND R 22

[

The flag can then be tested zlsewhere with a statement like
this:

IF FLAG THEM FRINT "YES"

These examples are compatiblie with the Microsoft BRASIC as
well.

The MOD operator i1is used to retuwrn the remainder of 2 thao
division of it’=s two arguments. In the sxample:

A = 0 MGCD

Lad

A oils assigned the value 2 bhecause S divided by I leaves a
ramainder of 2. MOCLY 1s mobt supportasd by OS5 BASIT

.
Lagical operations accept 14 bit arguments and produce s 146
it result. 031 BASIC is limited to 15 bit arguments.
Mo run—time error checking is done for overflow, wunderflow,

or division by zero. This contributes greatly to bthe soeed
of programs produced by the compiler, But also places a
greater burden on the programmer to insure that these
conditions do not arise or cause erronecus resplts.

The ASC{Y function:

The ASC function returns the 4SCTI value of ths first lettar

of the enclosed string constant. Theretare in the follocwing
sxamnla:

FRINT a3Ci"4")

the number 85 will be printed, a= that ig the ASCII
equivalent for the lethter 4. The AZSC functiaon cann be ussed
g

in this way to specity any printing character. Character
constants may also be specified by placing them between
single guotes. The next two examples are functionally

gquivaleant:

IF Cor=asciravy AmMD (= el THEM 26
IF Cx=""" AND Cd="Z7 THERM 2o
The second example is not compatible with OST BASIC.

INT

The IMT function is supported to sase the transition €rom
081 BASIC to FBASIC. In BASIC the INT function returns the
integer part of the enclosed expression. Since FRABIC is
integer only, INT is actually ignored. Theretore programs
which are to be tested with 081 BASIC can use the INT
function where necessary to keep results the same.

Division is the most troublesome in this respect. By
enclosing all divisions within INT functions the main point
of incompatibility bewteen the two BASICs can be alleviated.
This allows greater fresedom to develope programs in the
interactive environment of 0SI RASIC before compiling them.

PEEK

FEEK allows the inspection of any byte of memory. It
requires one argument, which is used to designate the
address of the desired memory location. The value stored at
that location iz then returned.

RND

The RMDO) function returns a pseudo-random number withino a
range controlled by the enclosed eupression. In the
example:

A=RND (1)

A will be set to a number in the range from @ to 9.

11

FLOW OF CONTROL

GOTO

The GOTO statement allows the simplest form of contreol of
program flow. It causes control to transfer to a specified
location allowing the normal seguential execution of lines
to be altered as required. The target tao transfer control
to is specified by a decimal constant corresponding to a
line in the program (GOTO 188 or by & hex or decimal
constant preceded by an exclamation point (') which denotes
an absolute memary address (BOTO '$24651).

The compiler generates a single JMP instruction for GOTO.

GOSUBR

The GOSUER statement is wsed to transfer control to a
specified line much like the GOTO statement. The difference
iw that it saves the address of the statement immediately
following the GOSUR, and upaon encountering =S RETURN
statement control is then returned to that saved address.
Az with GOTO the target address may be specified by
linenumber (GOSUR 24 or by absolute address (GOSUR
PER2DI2) .

Since this statement uses the &382 processor stack to save
the retwn address, over 16§ levels of subroutine calls may
be used. 08I BASIC allows a maximum of 26 levels. Although
this increased capability allows a limited use of recursion,
care shaould be execised so that the stacks limits are not
aexceaded as no runtime error checking is made on this
condition.

The compiler generates a single JSR instruction for GOSUE.
This makes the use of common subroutines advantageous for a
reduction in code size.

RETURN

The RETURM statement causes control +to retuwrn to the
statement immediately following the most recently executed
GOsuUR. If a RETURN is encountered without a preceding
GOSUER, control is retwned to the calling program, usually
the operating system or BASIC.

A single RATS instruction is generated Ffor the RETURN
statement.

IF

The IF statement provides a means for conditional execution
of a group of statements. This statement is comprised of a
conditional expression and a statement or g oup of
statements to be conditionally executed. The THEN kevword
separates these two parts, and the end of line is used to
mark the end of the group of statements.

Erxecution of an IF statement begins with the evaluation of
the conditional axpression. The associated statement or
group of statements is then executed or skipped depending on
the value of the expression.

The conditional expression is identical +to a standard
expression except that it is interpreted as having only two
possible values, "true" {any non—-zerc valuea) or "falase!
{zero).

In the examples:
IF A=3 THEM FRINT "VYEG"

the conditional expression "A=5" iz evaluated firszt. If the
variable A iz equal to 5, the condition is true and cantrol
passes to the statement immediately following the THEN
keyword. Therefore if A equals 5 then YES will be printed.
If A is not equal to 3, the FRINT statement is skipped and
control passes to the next line in the program. '

The use of the BOTO statement is guite common with IF -
THEN. For this reason a shortened version of this construct
is allowed. The following two statements are functionally
equivalent.

IF mA=1 THEMN GOTO S@g
IF A=1 THEN S@d

IF statements may be nested:

IF A=3 THEN IF J=12 THEN FRINT "You Ret'"

ON GOTO/GOSUB

The ON keyword is used with either BOTO or GOSUE ta create a
multiway branch in the logical flow of a praogram. That s,
it allows you to transfer control to anv one of a list of
locations within a program, with the location chosen
according to the value of the expression.

12 INFUT "Enter option number (1-Z)"; N
2@ 0N N GOTO 1@a, 26, T
Z@ PRINT "Bad selection" : GOTO 149

133 REM Option 1
26 REM Option 2
I@@ REM Optiaon 3

As in this example the list of locations follows the GOTO o
GOSUR with commas in between as separators. Each number in
the list is asscociated with a value according to its
position in the list. The first member being 1, the second
2 and s0 on. Therefore if the variable N in line 2@ is
2qual to 1 then control is transtered to line 1@,

I¥ the expression is equal to @ or is greater than the
number of references in the list then the statement is
Jdgnored and control passes to the statement immediately
following the ONM statement. Iin the example, if N equals @
or N is greater than three then the ON statement does
nothing, and control passes to line 3@. This is called the
default.

Up to 128 references may be made within an ON statement. To
do this the list of references may be spread over several
lines by using a plus—-sign (+) as a continuation character.

13 OM X-20 GOTO 14@,268, 386, 4605, SO+
2O, SEH, THG, BES, 6, 1O0H, 1616, 1000+
IE L, 1G38, 1045, 1950, 1060, 1676, 158

Each continuation line must begin with & comma. The rest of
the line following each plus sign is ignored by the
compiler.

Using GOSUR with OM is slightly different than with GOTO
because of its built—-in return feature. When & FRETURN
statement is encountered after am ON GOSUBR, control is
retuwned to the statement immediately following the ON GOSUE
statement. That is, it returns $o the rame statement that
takes control on defaulf.

14

The OM statement helps to consolidate multiple decisions and
to reduce code size. When three or more references are made
with the ON statement instead of using multiple IF
statements a very noticeable decrease in the amount of code
generated is usually apparent.

WHILE

The WHILE statement is used to combine a group of statements
into a single unit which is executed zera or more times
until the value of its eupression is zero (false). In the
axample:

WHILE ACrS
FRINT A
A=A+1

WEND

the expression immediately following the WHILE beyword is
avaluated first. If the condition is true, control passes

to the statements immediately following. When the WERND
statement is encountered it passes control hack to the WHILE
statement thus forming a loop. I¥ the WHILE condition i=

false, control passes to the statement immediately following
the WENMD kevword. If the conditional expression is false
initially then the enclosed group of statements will be
skipped entirely.

Each WHILE statement must have exactly ane WEND associated
with it. This asscciation is similar to that of the FOR and
MEXT keywords. Each WENMD is automatically associated with
the closest preceding WEND-less WHILE. WHILE statements may
be nested to anv level.

FOR

The FOR statement is used to form a program loop.
The FOR statement is the loop initiator and therefore
contains the limit parameters of the loop. In the example:

18 FOR I=1 TO 14¢
28 PRIMT I
S8 NEXT I

the variable I is used as the loop counter. Therefore the
sub—~statement I=1 assigns I to an initial value of 1. The
keyword TQ delimits the initialization ard limitk
SHOresSS1 ONS., The second suaprassion {1 @) specifies the
termination condition of the loop. In other words, the loop
will be exited when the value of the counter variable T is
greater than 1§,

The counter variable iz incremented by one sach time thirough
the loop until it is greater than the exit parameter.

13

The MEXT statement provides the delimiter for the “bottom"
of the loop. Therefore, the loop is a group of statements
with FOR at the beginning and NEXT at the end.

The I following the NEXT in this example is optional. Since
@ach NMEXT statement is alwavs associated with the closest
preceding MEXT-less FOR, the compiler makes the association
auvtomatically. Each FOR statement must have exactly one
MEXT associated with it.

I two or more NEXT statements ocow together, as when loops
are nested, the following shorthand may be used in place of
separate MEXT statements back to back:

The exit test is effectively at the bottom of the loop,
therefore a FOR ~ NEXT loop is alwayvs executed at least
IV

FOR ~ MEXT loops may be exited prematurely if necessary,
with a GOTO or similar statement.

The initialization and limit expressions of e FOR
statensnt are evaluated only upon entering the Toop.
Therefore altering the values of the variables used within
these expressions {other than the loop counter) from within
the FOR - NEXT loop will have no effect on the number of
times the loop is repeated.

FEABICD does not support the S8TEP specifier.

END

The END statement provides a means for completing or halting
the run of & program. It may be used abt any point to abort
a programs flow and retuwn control to the calling program,
usually the operating svesbtem.

A BENMD ds auvtomatically appended to the end of esach FRASIC
progran. A single JHMP instruction to the runtime package is
generated for END.

EXIT

The EXIT statement is used to exit a program and transfer
contral directly to the operating svystem. This is
especially useful for programs like the XREF utility which
can be called from BASIC, but should not retwn to it
because they write over BASIL. The compiler generates a JMP
instruction when an EXIT is encountered.

INPUT

The INFUT statement provides program input via the cperating
system. It can take either of the two forms illustated by
the following examples:

INFUT A
IMFUT "Frompt string"iA

In the first example, the program takes input from the
currently active device, and stores the associated numeric
value of that input into the variable A. In the second
example, the string of characters within guotes in the INFUT
statement are printed prior to taking input. The cursor is
placed at the space immediately following the stiring.
Unlike 0SI BASIC no additional characters are displaved for
prompting. You have full control over the input prompt.

Error handling on numeric input is no¢ automatic. Mo
message ("REDO FROM START™) is produced. Instead this
condition is flagged for the programmer to handle as he
pleazes. 0On non—-numeric input the processor’s Y register is
retwned with the high bit set to one.

1 INFUT A
2@ T=,Y : REM see section on register access
2 OIF Tr1Z8 THEN PRINT "IMPROFPER INFUT" @ GOTO 1@

The input is buffered at $2E79 ($Z&F2 for 63U and may be
accessed with the FEEK function. This buffer is used by the
operating system to buffer the directory when searching for
a file, it is not normally used for any other purpose.

The length of the line of input is alsc retwned in the Y
register and may be used as follows:

INFUT &
LN=LY
LN=LN AaMD 127 : REM ignore high bit (error bit)

Mull input {carriage return only) iz Fflagged as valid
numeric and the variable is set to rero.

At runtime the INFUT statement allows simple line editing.
Both the Rubout and Underline (shift-0 on video systems) can
be used to delete characters. Control-U may be used to kill
or delete the whole line, instead of 081°s use of the "at"
symbol (3.

Input comes through the operating svstem’s input/output
distributor. The input device may be selected by changing
the operating system’s input distribuotor flag (z@e vour
operating system manual?l.

PRINT

The FRIMT statement provides program ocuput via the operating
system. Output goes through the system™s input/output
distributor, and may be redirected to the various system
devices as outlined in the operating syvstem manual. FRASIC
does not support the FRIMTH# statement. Therefore
redirection of ocutput is accomplished through direct access
to the input/output distributor flags. Examples for 05-&5D:

FOKE 8993, 1
FOKEE 8993,2
FOKE B8994,2
FOKE 8994, 1
FOKE 8994,3

REM input from serial

REM input from polled kevboard
REM output to video

FEM output to serial

FEM output to both

¥z 82 % =3 us

This form of 1/0 redirection is more wversatile +than the
FRIMNTH# because it allows output to be directed to several
devices simultaneocusly. Input may come from anly one device
at a time.

The FRIMT statement accepts a list of zero or more arguments
includings:

String constants
numeric expressions
The CHR$ () function
The SFC{) function
The TARO function

A string constant is a group of characters enclosed in
quotes:

"I AM A STRIMG®

Numeric expressions are covered in detail within the section
devoted to that topic.

The character string function "CHR$(exp)" iz used to output
a single character corresponding to the ASCII eguivalent of
the enclosed expression. As an example:

FRINT CHR% (&65)

will print the character A to the current ocutput device, as
&5 is the ABCII code for that letter.

FRINT statements may contain any combinaticon of these three
types of arguments. Arguments should be separated by
semicolons, not commas.

Al cairriage return/line fead is normally printed
antomatically at the end of a print statement. This may be
suppressed by placing a semicolon after the last argument in
the statement.

18

When FEASIC prints the value of a numeric expression no
spaces are printed either before or after the number itself.
This simplifies formatting of numeric output.
Some additiconal examples:

FRINT "The answer iz=:"3; A

FRINT "25 plus 898 equals: "; 25+88
FRINT CHRS$ (FEEK (1)) ;

PRINT Functions:

To simplify formatting of output FBEASIC provides several
functions which are associated with the FRINT statement.

POS

The POSO) function is used to obtain the current column
positiaon of the cuwrsor. That is, the location at which the
next character will appear on the cwrent output device.
Thie eases formatting of output.

A=F08 (4

IF POS(@) >332 THEN FRINT

The POS{) function requires a dummy argument the value of
which has no effect on the value it returns.

SPC
The SFCO) function is used to print a number of spaces. The
enclosed exnpression governs the number of spaces to be
printed.

FRINT A; SPC(CXRZ): H
TAR

TAR{O) is used to move the cursor to a specified column
bhefore printing.

FRINT TAR(1g) 3 RBly TAR{26) ;3 RB2

If the cursor position is greater than the TAR argument then
the TAR is ignored.

12

DISK!

The DISKE! statement provides access to operating system
commands from an FBRASIC program. It accepts a string

constant as the command specifier. Any command acceptable
to the 05-43D operating system may be used.

DIGK! “CAlLL 4@gg=gg, 1"

One FBASIC program can be called from another (chained) by
using something like this

DISE! "X@ TEST"

DIM

The DIM statement iz a declaration statement that reserves
space for integer arravs or vectors.

The statement:
DIM A(SEE

allocates memary for 391 integers, {one more than is
specified because the index starts with zero). The argument
must be a numeric constant as no facilities are provided for
array allocation at runtime.

The DIM statement may also be used to specify an address
rather than to reserve space. This allows you to place data
anywhere in memory. The syntax for this option is as
fallows:

DIM B(!37344)

The exclamation point preceding the number in this example
instructs the compiler to use the constants value as the
address for all subsequent accesses of the declared arrav.
in this example the first element of the array will be
stored in memory at location 37344, The same location could
be specified in hexidecimal:

DIM R(!sE@HGE)
No boundary checking is done at runtime, so it is possible
to access a value ocutside the limits of a dimensioned A AY .
This should be avoided as other partz of the user program or

the operating system may be overwritten.

The DIM statement also allows the values of an array to be
initialized at compile time.

DIM A(1E =(1,2,3,4,5)

20

The first place within this array, location ACED will be
set equal to 1. Similarly, A{1) will egual 2 and A{4) will
equal 5. Additional locations not provided with initial
values are set to @. Since this initialization is
accomplished at compile time, use of this feature with an
absolute memory location is invalid.

DIM BOYIE768)=(3,5,5,5) 1 REM wrong
Far larger tables of data this initialization may be
continued on as many additional lines as necessary. The
compiler will continue looking for parameters until it

encounters a closing right parenthesis.

199 DIM COLEB) =(1,2,3,4,5,6,7

114, 8,9,18,11,12,17
126, 14,15,16,17,18
133, 19,20,21,22,23

Motice that the separating comma between the last parameter
of one line and the first parameter of the following line is
placed at the beginning of the line. This is necessary
because BASIC s editor removes blanks from the beginning of
each line, and would therefore concatenate the line number
with the first parameter. The blank space in the second,
third, and fowth lines of this example is for clarity, and
is not required.

The initializing data must be numeric constants or character
constants as in the next example:

DIM CH(S)=("#", %", "%, &)

Array initialization in FRASIC is provided as an alternative
to DATA statements. DATA statements lend themselves poarly
tao efficient generation of code.

POKE

The FOKE statement provides a means for altering any memoiry
location. In the example:

FORE 378838, 2

A 2 will be stored at location S7988 in memary. Ay wvalid
expression may be used for @ither argument.

The address is a 16 bit value, allowing access to all &4
addressable memory locations. The second value is stored
inte an 8 bit memory location. If this parameter is greater
than 235 (8 bits) the high order bits are simply ignored.
In the example:

FORE 37888,25
the value stored at 37988 would he #.

Mote: The statement FOKE expl,PEEK{exp2) will not work with
08I BASIC but will work properly with FRASIC.

#FILE

The #FILE statement allows source files to be linked
together. This removes the 26K source file size limitation
imposed by 08I BASIC. The only limitations to the size of
an FBASIC sowrce program are the amount of disk space
available, and the number of line numbers’ acceptable to
BASICs editar (&4,@@5). This statement iz used as follows:

#HFILE "MEXTFILE"

As with the command line interpreter file names may be
preceded by a disk drive specifier:

#FILE "EapMEXTFILE"
Linked files should not contain coinciding line numbers for

obvious reasons. During pass one the compiler reports each
#FILE statement encountered to the console.

DIRECT REGISTER ACCESS

FRABIC allows direct access to the A, X, and Y registers of
the 6382 processor. This enables programs to be directlw
interfaced to existing machine language routines.

FRegister access is specified by & dot or period {aly
followed by the letter corresponding to the desired
register. In the assignment statement:

- A=

the accumulator will be loaded with the low-order bvte of
the variable H.

As a further example, the 05-465D operating system contains a
useful subroutine which when called prints the value of the
accumulator to the console in hexadecimal. Therefore the
following program will print the hexadecimal value of H to
the console:

« A=H2E6 i REM the high bvte first
GOSUR '$2D92 @ REM call hex print
« A=H : REM the low byte

GOSUR '$2DIZ REM and print it
Bince the &392 registers are 8 bits wide the high order byte
of the expression is ignored.

In this form of assignment statement any wvalid numeric
expression is acceptable. However, be careful not toc place
any statements between the assignment and the GOSUR that
might corrupt the register value. The only statements that
are guaranteed not to alter the registers are; GOSUE, =074,
RETURN and simple assignment statements such as

. X=T
LY=EAT
. A=VAR

Assignment of the other registers may be made without
affecting previous register assignments if the assigned
axpression is limited to a single variable or constant. For
instance to call & subroutine with the A and Y reglisters
holding the low and high bytes of & wvariable use the
following format:

LY=HA256 : REM get high bvte of H
. B : REM and low bvte
GOSUR 1@agd i REM call subroutine

In this case the two assignments MUST be made in the order
shown, otherwise the computation involved in the firet
statement may corrupt at least one of the register values.

¥

In any register assignment involving an expression with one
or more arithmetic or logical operators, only the register
involved is considered of known value at the completion of
the assignment. The other registers are often used for the
evaluation of the expression.

The compiler also provides a means for placing a register

value into a wvariable. This is necessary £ o the
utilization of some existing subroutines. Afs an example,
the operating system’™s inmput routines retuwrn inputted

characters in the A register. In the following example the
main 08-68D input routine is called and the returned
character placed in the variable CH.

GOSUR 1423449
CH=.#A
CH=CH AND 255

FEM input with echo
REM save accumulator
REM zero high bvte

In order to preserve the three processor registers this type
of assignment statement does not affect the high byte of the
variable, Therefore the variable should thean be
subsequently ANDed with 255 in order to inswure that the high
byte is zero, or the variable may be zeroed prior to calling
the subroutine. I+ the variable is used only for 8 bit
values (@ to 25 then zeroing each time is unnecessary.

Register assignment may also be used to advantage in large
programs for passing parameters to often called subroutines.
This can increase speed while reducing program size. Tao
simplify passing 14 bit parameters a form of register
addressing is supported which accesses the A and X registers
symul taneocusly:

« AX=NUMKES
VAL=.AX

The low order byte is placed in the A register and the high
order in the X register.

One last form of register addresszing allows access to the
&EEE stack pointer. It i= useful when several levaels of
GOBUEs need to be exited at once, as was necessary with the
compiler itselt for error recovery.

188 STACK=.8
1148 REM

128 . 8=8TACK
12¢ GOSUR SEd

14 3
SEE GOSUR &o0
S1d

sEd IF ERR THEM 126 : REM cleanup stack % restart
&18 RETURN

24

MEMORY USAGE

This section deals with the allocation and use of memory by
a compiled program.

ALl non-subscripted variables are stored within the bhase or
zero page of memory. The maximum number of these wvariahles
is limited to 1gd, Allocation starts at location one {(not
zera), and goes upwaird.

Thus the amount of the base—page used by a program may be
ascertained from the number of integer variables used. As
an axample, if the compiler reports that vyour program
contains 1@ variables (not including array variables), then
the first free space in the base-page is at location 21
(15, That is:

{(MNo. variables) ¥ 2 + 1

The number of wvariables 1is woultiplied by 2 because
variables require 2 byvtes of storage each.

The operating system and the FBASIC runtime package use
various locations in the base-page above $DE. Therefoare
locations from $D@ to $FF should not be used in vour
PO ANMS .

FEASIC does not initialize the processor's stack pointer.
This allows a compiled program to be called From wvirtually
any other program as a subroutine, and to return to that
calling program when its function is complete.

Dimensioned arrays not emploving the absoclute address

featuwre are allocated space within the obiect module. This
allows their values to be pre~initialized if desired.

RESERVED WORDS

AND 3070 OR SFC
ASC IF PEER TAER
CHR% INT FORE THEM
DIM MOD FOSs 7O
END NEXT FRIMNT WEND
FOR NOT REM WHILE
GOsuUR On RETURM

Fd
Lh

FBASIC versus 051 BASIC

The purpose of this section is to point out some of the
differences between FBASIC and the 0SI interpreter BASIC.

NUMBER SYSTEMS

A fundamental difference between these two BASICs is their
number systems. While 08I BASIC supports both integer and
floating poeint numbers, FBASIC is limited to integers. Also
the representation of integers differs between the two
systems.,

051 BASIC integers are 15 bits wide, with an additional bit
for the sign. They cover the range from -—-327468 to 3I2747.
In contrast FBABICs integer representation is unsigned with
a range of from @ to &55I5.

Since the &3@2 processor does not directly support s5igned
integers the unsigned approach affords a much greater level
aof efficiency and speed to compiled programs.

With an understanding of the differences between these two
types of integer representation the transition should be
fairly simple. The most important aspect to remember is the
boundary. In the example:

IF ACE THEN 266

the condition AY@ while valid and useful in 0SI BASIC, can
naever be true in FRBASIC because negative numbers are not
included in its number system.

With 08I BASIC when the integer range is exceeded in either
direction an error is reported. With FRASIC the number
simply wraps around. Therefore the expression:

is equivalent to # in FRASIC. When fully understood this
feature can be used to great advantage.

OTHER DIFFERENCES

The following statements,

supported

ARS
ATN
CLEAR
CONT
cas
DATA
DEF
EXIT

Further,
runtime w
variables

by FEASIC:

S EXF
Fi
FRE
LEFTS
LEN
LIST
LOG
MID%

commands

NEW
NULL
READ
RESTORE
RIGHTS
RUN

SGN

SIN

and functions are

SOR
STEF
STOF
STR%
TAN
USSR
Vak
WAIT

FRBASIC zeros only the non-subscripted variables

pon entering
at that time.

=

I

R oglram.

08I BASIC zeros

not

at
all

UTILITIES

Included with the compiler are several utility programs
wiritten in FBASIC. The source code is included with most of
these to provide examples of the various FEASIC constructs.

The FEASIC system diskette comes with the +following tilaes,
tas listed with the DIR wtilityy:

BEXECk #9-@9 DELETE 1i-11 FEBLIER I@-Zg FARE8EZ 13-23

CREATS 29-29 DIR 12-12 FDUMF 1g-1g RENUM 31-71
CREATE Z3-33 DIR% 24-24 FDUMP$ Z7-37 REMUMS Z4-36
DEL $ 232 FBASIC 25-28 0s865D3 @8 AREF z8-41

14 Files Defined

CREATS

This file contains the source code for the CREATE utility.

CREATE

The CREATE utility is similar to the one supplied with the
05-53D operating system. A sample dialogue:s

RUN"CREATE"
File name:FRED

42 43 44 45 446 47 48 4% B 51 52 53 5S4 55 5S4 57 58
b1 &2 &7 L4 65 b& LT 6B &9 7@ FL 72 T7E T4 TS 74

First track:42
Mumber of tracks: 3

The numbers listed after the file name is entered are the
available tracks on the current dishk.

DELS

This file contains the souwrce- code for the DELETE utility.

DELETE

The DELETE utility functions much the same as the standard
CELETE provided with 45D except for a great increase in
speed.

DIR

The DIR utility is similar to the usual directory uwtility
axcept that it sorts the file names and displays them in
four columns. The sort used is a simple (usuwally =zlow)
bubble-sort which gives a good demonstration of the speed of
the compiled code.

DIR%

The DIR$ file contains the source for the DIR utility.,

FBASIC

The FERASIC file contains the first pass of the compiler and
is invoked to start a compilation.

FBLIB

The FBLIE file contains FRASICs library of functions which
are added as necessary to a compiled program. Since FELIR
is composed of several sectors on a single track it cannot
be copied with a simple LOAD and FUT sequence.

FDUMP

The FDUMF utility is used to examine the contents of a disk
file. It prints sixteen byvtes per lirne in hexadecimal and
ASCII. This utility is composed of both an interpreter

BASIC module which is used to setup and open a file, and &
compiled module which does the actual dump.

FDUMP%

This file contains the source to the compiled portion of the
FDUMP wtility.

08463D3

This Ffile contains the operating system, 081 BABIC,
Assembler, and Extended monitor.

PASS2

This file contains the second pass of the compiler. It i
invoked by the first pass automatically.

i

RENUM

This utility is used to renumber RBASIC souwrce programs. s
provided it is compiled to run at $#205 (over 08I BASIC) in
order to allow the souwrce program to be resident. Example:

AXCA F200=31,1

4%60 82008
Start: 1@

Incr : 14
Fau

AXPU TEMP
AXBA

The "Start:" prompt refers to the number to be used as the
new starting line numbher. "Incr " refers to the increment
to be used between line numbers.

It is wise to save the newly renumbered file to a different
file until you check it for correctness. FREMUM will report
refaerences to nonexistant lines to the conscle.
If yvou have memory at $D@8E {(on serial systems) or at $SE@gD
the process of using RENUM can be simplified by recomipiling
it to that location and calling it directly from BASIC.
First recompile:

*RENUME -0 RENUM -H —-C EGOS
Then call into memory:

DISK!"CA E@sg=31,1"

Then whenever you need to renumber the program you currently
have in memory just type:

DISK!"GD Ed@o"
Control will be retwned to BASIC when the renumbering is
complete.
RENUMS

This file contains the socwrce code for the RENUM utility.

AREF

The AREF wtility is wused to generate full sorted oross
raeference listings of FEASIC programs to =asze the task of
keeping track of all variables and lines referenced within
the program.

A

RENUMS

REM BASIC program renumberer
REM
REM may be compiled to $E@dd, if vou have RAM there
REM and called when desired with a:
REM
REM DISE!'"GD Eggg"

4 REM
REM o
REM may be compiled to $6260, then to use:
REM
REM EXIT
REM LOAD +filename
REM CALL @28d=yx, 1
REM B0 @2g@
REM
REM the file should then be saved back to disk
REM

27E REM
284 REM
g REM Frompt for starting number, and increment
= INFUT "Start: "3 8T
2@ INFUT "Incr 3 "3 IN
k3 DIM LNC!$REEB) : REM for table of old line numbers
oY s -

I&HE DIM D(E) 2 REM for digits of line number

IT7E s

8@ AD=PEEK (4Z179) +FEEK ($317A) %256 : REM pointer to teut
I9d L=8T

4@d D=AD

414 s

429 REM first pass, change line no.s and build table
I REM of old numbers.

44 3

45¢ LNUM=PEEK (D+2) +FEEK (D+7) %256 1 REM line number
463 IF D=8 THEN D2 : REM end of file?

FTE OLMNI=LMUM ¢ MN=pN+1 : REM put no. in table
488 FOKE D+2,L @ POKE D+3,L/236 @ REM change to new no.
49@ L=L+IN
S@E IF NH288@ THEM PRINMT"Too many lines":END

S1g D=FEEER (D) +PEEK (D+1) ¥25& : GOTO 458 : REM new pointer
[2H 2

539 e

a44 REM second pass, find GOSUBs, GOTOs, % THEMs, &
558 REM adjust references for new line rnumbers.

n&E 2

57% D=AD

S g

B I=D+4

&EE ITF D=g THEM FRINT "PAUY @ END

HlE C=PEEK (1) 1 I=I+1

2@ IF C=@ THEN D=FEEK (DY+FEEK (D+1) %254 : BOTO S96

=1

&g
b4
&S5

bH&E
&7
&8
L3P
7 i
7ig
TR
7E
744
75
7 &
77
788
7
S
S1a
829
AT
B4
=datn
3&iH
87
884
8
FE@
F1E
PR
QI
P45
FEG
F&HE
G
Pag
PP
1 SEE
116
132
18356
14940
1 ESE
18468
1873
1E86
189
11a3
111
1128
11353
114
i15@
11&e
1178
1184
1199

"
"

REM THEN GOTO GOsSUR RURKN
IFC<>168 THEM IF C<x1346 THEN IF C<x14# THENIFCY =137 THEM &1
REM build line number

E0SUR 1@@g » REM get char

F=I-1 1 REM pointer to start of number
MNUM=@ 1 M=@

GOTO 734

GOSUR 1488 @« REM get char

IF CLASC("g") OR CraBC"9") THEN 774
MUM=NUMKX1@+C-A8C (" g") » Lh=LN+1

GOTO 724

IF LN=@ THEN &2@

REM search for match in table

FOR J=¢g TO N-1

IF LN(JY=NUM THEM 868 : REM go change number

NEXT

FRINT"Bad ref to "NUM" in line “FEEE (D+2)+FEEK (D+2) 254
GOTO Q4@)

REM change line reference to agree with new line no.
GOSUE 1468 » REM convert num from binary to ASCII
L=l -1

IF LN THEM GOSUR 1199 : REM block move to make room
FOR kK=5-L TO 4 : POKE F,D(k) 3 P=P+1 : NEXT

IF L<LN THEN FOEE P,32 : P=P+1 @ L=L+1 : G0TO 928
I=I+ 1 : REM adjust text pointer

IF G237 ,7 THEN 620 @ REM ON GOTO/GOSUR M, ey wewew.
IF PEEEA(I)="," THEN I=I+1

GOTO HB8HE

REM~-———— get character from program
C=FEEK (1) : I=I+1

IF C=32 THENMN 139

RETURN

REM binary to ASCII conversion
X=JIXIN+ST

=g

FOR K=1 TQ 5

Y=X/18 3 DIG=X-Y%1g
D(S-k)=DIG+ABC ("g")

X=Y

L=L+1

IF =8 THEN RETURN

NEXT

RETURN

REM block move, used to make room for larger number
T=FEEK ($Z17R)+FEEK ($317C) 2346 : REM eot pointer

ey
R

1298
121¢

224
12748
1244
1259
1264
1276
1284
1299
15
1314
132
13=g
1344
132549
13649

COUNT=T-F
k=g TO COUNT

FPOKE Q+LL,PEEE (ED)

FOKE 42178, 7T FOKE $317C, T/254 REM update eot pointer

REM fixup line pointers

=FPEER (K1) +PEER (K1+1) X256+

OFE K1,k FORE K1+1,K/2546

IF PEEK (K1) +PEEK (K1+1) THEN

&

CREATS

lag REM Create utility for 058-65D

114 REM must be compiled

128 REM

158 PN=3480@ : REM location of directory buffer

148 DIM A 842600) @ REM flags for tracks in use

153¢ DIM BUFF (!'4$473d6) @ REM for storage of file name

164 1

17@ FOR I=@ TO 76 @ A(I)=@ : MEXT

18H

19@ REM Call both sectors of directory into MmeEmoy

208

21 FPOEE 14482, d : REM keep head loaded

220 DISK ! "CA 40@g=Gg, 1"

23 PORE 14882,128 @ REM allow head to unload

248 DISK!"CA 41igd=(8, 2"

25 2

L@ REM find all tracks in use, and find first open space for
dir entry

27@ 1

288 ME=@ 1 REM zero next-entry pointer

294 FOR I=PM TO PN+S11 ’

I@d IF PEER (D)< -ABC("#") THEM 33g

31@ IF NE=# THEN NE=I : REM save pointer to first acpen space

T2 BOTO Z68

S3F T=FEEK{I+&) : BOSUR 978 : A=T

Z44 T=PEEK(I+7) : GOSUR 978 : B=T

I0E FOR J=A TO B @ A(JY=65535% @ MNEXT : REM flag tracks as in-use

368 I=I+7 1 REM instead of STEP 8 in FOR statement

I7E NEXT

89

390 REM get file name from user

4@E x

41g INFUT "File name:";A

428 LN=.Y : LNM=LN AND 127 : REM length of input in low 7 hits of
Y oreg

428 IF LM=g THEN END : REM give user a way out

444 IF LN»S THEN 419

4o s

468 FOR I=@ TO LN-1

47¢ BUFF (1) =FEEK ($2E79+1)

48@ NEXT

49d FOR J=1 TQO 7 : BUFF(J)=32 : MEXT

SEE T=FEEK ($2E79)

S1E IF TLASC{"A™) OR THABC(MZ™) THEM 416

528 3

53 REM check if name already in use

349 =

SaE FOR I=PN TO PN+S12

S&E FOR J=00 TO 5

57
S89
=S9E
L

IF PEER(I+I) AFRBUFF (I THEM 629

NEXT

BOSUER 1#1@ @ REM print file name to console
FRINT " already in use"

34

614 GOTO 414

LHZE I=I+7

&IE NEXT

646

658 REM print free tracks

bb&E PRINT

679 FOR I=9 TO 76

688 IF A(I) =6 THEN PRIMT I; " "j

&9¢ IF FOS () »55 THEN FRINT

7EE NEXT

71g PRINT & PRINT

728 x

A OINFUT "First track:"; FT

74 T=.Y : IF T»127 THEN 738 : REM not numeric if Y reg 127
739 IF T=# THEN END

768 IF AFT) THEM PFRINT FT; " in use" : GOTO 738
77¢ INFUT "Number of tracks:";NT

78 T=.Y 1 IF Tr127 THEN 774

799 IF T=# THEN END

BadE 2

Bl FLAG=g

82¢ FOR I=FT TO FT+NT-1

BI3 IF A(L) THEN PRINT I; " in use" : FLAG=1
848 MEXT

85% IF FLAG THEN &&¢9

Qb 2

878 T=FT : GOSUR 1#8¢ : BUFF({&)=T

88 T=FT+NT-1

89 GOSUR 1@8@ : BUFF{(7)y=T

FEd 2

?1g FOR I=# TO 7 2 FOEE I-+NE,BUFF{I) : NEX
Q2 3

3@ IF ME-PN <288 THEM DISK!"SA #8, 1=4@@g/1" 2 END
4@ DISK!'"SA @8, 2=41g@5/1"

@EE EMD

FoHE

P7E T=INT(T/1&%1d + (15 AND T

8@ RETURN

FHG 2

l3eE REM print out file name

1813 FOR E=@& TO 5

1928 TT=RBUFF (k)

188 IF TTCX32 THEM PRINT CHR$(TT)

1349 NEXT

1358 RETURN

1868 2

187@ REM subroutine to convert T to binary coded decimal (BCD)
1488 T=A(T/1E)%1l& + T MOD 14g

13939 RETURM

DIR%

14
11a
124
126
1443
15
1&E
17
18@
1924
289
214
2218
2T
244
25
264
27
28d
294
el

21

IS8
Z&E
37
I8d
A=Y
A5
41
420
4755
4 4.4
459
&
47
48
4
S
Sl
526
S
S48
ST
566
579
SR
S
&
ala

L2d

REM Souwrce for "DIR®

REM Directory wutility for 08-65D

REM may be interpreted or compiled with FRASIC
REM

NF=-1

PN=16%84 : REM location of buffer

DIM A(64)

FOR I=¢ TO &4 @ A(I)=H : NEXT

REM Call both sectors of directory into memory
FORE 143582, d : REM keep head loaded

DISK ! "CA 4d@g=4g, 1" ‘

FORE 10682, 128 : REM allow head to unload
DISK ! "CA 41d@=p8, 2

GOsUR I28
FRINT : PRINMT NF+1 " Files Defined"
END

REM
FRINT

=
H

REM Build array of pointers to file names

FOR k=8 TO &3 1 I=k¥8+Fp
IF PEERA(I)< >33 THEMN MF=NF+1 : A(NF)=I
NEXT K

REM Sort array

Fl=g@

FOR I=@ TO NF-—1

FOR J=@ TO 5

Ti=A(I)+J : T2=A(I+1)+d

IF PEEK(T1) *FEEK(T2) THEN Si@

IF PEEEA(TL)<FEEK(T2) THEN 53H
NEXT J :
FL=1
T=A(I)sA(DY=A{I+1) s A(I+1) =T

NEXT I : IF FL THEN 443

REM Print cut in 4 columns

T=NF+1-INT(MF/4) %4 @ REM can alszo be expressed as:
: REM T=i{MF+1: MOD 4

ROWS=IMT (MF/4) 5 IF T THEN RONS=ROMS+i

FOR F=¢ TO ROWS-1

FOR L=@ TO =

HITE I=LAROWS+E

&48 IF A(J) THEN GOSUR 7ag

638 NEXT

LHb&E PRINT

&7 MEXT

688 RETURN

HFE 3

TEE e

71lg FOR I=A(J) TO AMD +S5:FRINTCHRS (FEEK (1)) 3 st MEXT
T2E PRINT " "y

7@ Z=PEER (1) : BOBURT79E

748 PRINT"-"y ¢ I=PEEK{I+1):GOSURTIH

73E FRINTM fa

7&E RETURN

T7E

788 REM————— Convert BCD to ASCII and print it

794 PRINT CHR$(Z/1&6+ABC("H")) CHR$((ZAND1S)+ASC("®"))
B RETURN

¥

DEL %

1é REM Delete utility for 08S-65D

113 REM must be compiled with FERASIC compiler

1280 REM

128 NF=-1

149 FPN=%4ddd : REM location of directory buffer
15645 DIM RBUFF(7) : REM file name buffer

1&E 2

174 REM Call both sectors of directory into memory
18@

19@ FOKE 14@82,@ : REM keep head loaded
20 DISKE!'"CA 4ued=g, 1"
21¢ FPORE 16682, 128 : REM allow head to unload
228 DISK!'"CA 41@@g=gg, 2¢
234 s
244 REM get file name from user

254 1

26@ INPUT "File name:"3;A

278 LN=.Y : LM=LN AND 127 : REM get length of input {(low 7 bits
af Y

284 IF LN=# THEN EMD

298 IF LM>é THEN Zad

35700

21g FOR Is=@ TO Li-1

J28 BUFF (1) =FEEE (32E79+1)
$2E79, moveto BUFF

IEE ONEXT

248 FOR J=I TO 7 : BUFF{(J)=32 s NEXT

358 T=PEEK ($2E79) .

Z6E IF TIASC("A") OR THABC("Z") THEN 268 : REM first char must
be alpha

ITE s

388 REM search for name in directory

I x

4¢3 FOR I=PM TO PN+S12

418 FOR J=@ TO 35

420 IF PEER (I+J)<>RBUFF {(J) THEN 484

47@ NEXT

44@ REM found name

45% GOSUR &6 @ REM print file name to console

464 MNE=I

47@ GOTO S74

48@ I=I+7 : REM instead of STEF 8 (not supported by FRASIC)

498 NEXT

SEE 2

S1d BOBUR &&F ¢ REM print file name to console

524 PRINT " not found®

3@ BG0OTO 2T @ REM go ask for file name again

D49 1
35@ REM routine to delete entry from directory

S5 2

S7E FOR I=@ TQ 7 : FORE I-+NE,ASCOY$") = NEXT

58E 3

ST IF NME-PN < 25 THENM DISK!'"SA @8, 1=4@@#/1" : G0TO &1¢

xx

REM give the user a way outb

REM input is buffered at

=8

&
&1
L20

1]
b4
LS
GoE
&L7E
&84d
&P

7

DISE!"SA &8, 2=41g@/1"

FRINT " de
END
REM subrou

FOR k=@ TO
TT=BUFF ()
IF TT< 32
NE X ,
RETURN

leted"®

tine to print file name to consocle

5

THEN FRINMT CHR$(TT);

- &

FDUMP$

1 REM Compiler portion of FDUMP utility

118

1248 REM The file is opened by the 081 RASIC program that calls
this

178

149 DIM RIS

154 =

168 PRINT = LC=1

1465 RC=g

174 s

18d WHILE 1 : REM loop till end of File (aborts on
e or)

185 .A=RC/25 » REM high byte of bvte counter

1846 GOSUR '$2D92 : REM print in hex

187 .A=RC 1 REM low byte of byte counter

188 GOSUR !3%2D92

189 PRINT " "y

199 FOR I=4 TO 1% : REM display 16 bytes per line

288 GOSUR 2341 H FEM direct call to input from disk device
#&

21¢ CH=.A s REM get character from dccumulator

220 GOSUER %2092 : REM call system hex output routine

23 PRINT " Mg i REM print a space to separate the byvtes
24@ R(I)=CH s REM save character to print later

259 GOBUR 414 H REM check for control-C & abort if
necessary

253 RBC=RC+1 i REM increment byte counter

264 NEXT

279 =

28¢% REM now print in ABCII

29E
snin
1@
T2
char
EEIE
44
To
S6E
78
8@
R4
¢4

FOR I=8 TO 15
CH=R {1
IF CH>=3Z2 AND CH<OL128 THEM PRINT CHR$(CHY3; @ GOTO ZI3g

k)

FRINT "."3 : REM just print a dot if mot a printing
MEXT

FRIMT

REM do formfeed every &8 lines for printer

LC=LC+1 : IF LC=6@ THEN FRINT CHR$(12); @ LC=#
WEMND : REM bottom of main loop

REM control~C check

414 IF PEEM (189%@)=1 THEN 43¢ : REM master system I1/0 id

424 REM l=serial, 2=video

422

425 PORE S7@88,1 : REM strobe kevboard (videa)

424 IF (PEEE/(S7988) AND &4)=¢ THEM RETURN

427 POEE S57888,4

428 IF PEEHA(S7HRE) aNMD &4 THEM END

429

43 IF (FPEEE ($FCHE) AND Lr=# THEN RETURM : REM check port input
status

4

449 IF (FEEK ($FC#1) ANMD 127)=3 THEN END : REM abort if control-
C (3
459 RETURM

41

FDUMP

1@ REM FDUMF
2@ REM
144 REM Set disk buffer to the top of memory (48K) where it

belongs!

145 =

134 REM {(up at $DE9E or above is even better if yauw have RAM
there)

168 3

180 FORE 8%998,d : FOKE 899%,180 1 REM START OF RBUFFER

203 PORKE 9@@d,9 : FOKE 991,192 ¢ REM END OF BUFFER FLUS 1
229 2

24¢ REM ADJUST MEMORY SIZE

268 3

288 FORKE 132,285 @ POKE 133,179

JEsd PORE 8948, 179: REM Master sys—-mem size in pages (less 1)

IREH 2

344 FRINT "File dump utility"
I&E FPRINT
I8 FRINT "Abort with control-C"
S9E PRINT
463
CAZe INPUT "File name“:F4$
44a 3
46 DISK 0,46,F%
486 s
S DISK ' GO Z17E"

LINEAGE TO 65U

A program compiled with the -U option may be combined with a
&0 program and SAVEd and RUM as a single package via the
LOADAS utility included with vour &5U operating system.

The compiled code may be transfered as per the instructions
an page 45 of the 05-65U Operators Manual .

To call the compiled module from 081 BASIC vou first set up
the USR vector with the following two POKEs:

.

FORE 8778,# : FOEE 8779,94 : REM $&0HE

Then at any point within the 08I BASIC program yvou desire to
call the compiled module simply insert:

