Fig-FORTH under Os—e510
Documentation

CPREL ITMIMARY

Thiz rFrogram i

Softuare Comzultants
TEST Rose Trail
Memeriis. TH 28134

CHE1Y IFF-Isan

i

= FroFrietarg to
and considered I tirade ook

INTRODUCT ION. s

The Software Consultamts ig-FORTH under O5-654U iz 3 ozt 1)
Caithfull dmFlementation of the fig model as defirmed in the Tig—-FORTH
Installation Manual & Glossard., The zrezs where we have devizted Trom
the model are defired later in this document.

We asszume that amwome who has purchazed this Fachkagde haz at leait EXwi 1=
familiarity with the FORTH lamgusde, S0 Wwe won't Jive 3 detziled
explanation of the workirge of the lamguzde. Howsuer, we would like to
make a Tew statemernts to thosse who are not ust polizhed FORTH

O

Ewven more tham some other lamguases, FORTH has 3 definste Sarmning
curve" before dou will feel confident in @our Prodramming. This
learningd curuwe will diftfer greztly zmorng individuzsle, mostly derpending
uron the toare of Frogramming ereuviously done.

Turpically, aszcembler Frogrzmmers will tzke to FORTH zlmost
immediateld, while those who’s background is ctrictlua BASIC reguire 3
onZer period of time befors theg begin to "think” in FORTH.
edarrdless of Your rFrevious backsround, i w@ou will take the time to
become Tamiliar with FORTH, we are sure Zou will agres that FORTH iz 3
eart Ferfect tool Tor witing most amy tuse of serlication wou can

(S E-¥- N

=ou (ol the Forth Interest Grour, P.0O. Box
11853, 5Sam Carlocs, CH 2340730, Cu

W stronmdla recommend that

¢ rrent membershie 1c $12.80/9c3r in the
SUs. PMembership includes @ subscrirtion to Forth Dimensions. This
madazine iz currentluy the best muzisble forum Toe intformation
concernind FORTH. Also zuvailable from fi2 are a nunber of manuals
which can be of gSreat hele to the beginning FORTH Frogrammsr .

DEVIATIONS FROM THE MODEL.

This wer<sion of FORTH was designed with bucinscss arFrplications inm mind.
Toward this end. seuverzl moditicztions of the original FORTH <custem
have been made zs doetfined below.

1. The warde DREA. DRl and OFFSET have bee
version was desismed mainle o haord dick baced =w

eted., Since this
ems, theg are not

2 The use of lowsk cg
the additionzl Tls=abil
Bbe about ten rFercent.

in definitions i= now 3llowed. Rs well as
a

==
ity in mamindg, comrile time iz als incresce

A, AN auto-load feature has been added which automatically loads
screen three uron boot or when the words COLD ok HBORT are axecuted.

This was dome to zllow "turn—kowg® sgstems with minimal orFerator.

training,

4. H "suiet compile” tezture has been zdded. IF the variable QUIET i<
~hon—zera, the comriler will not resort the U<HAMED CJISNCT UNIGUE™
messado., This =zgain is Tor turn—keg cucstems.

{10

and ULIST have teern remouved tam Lhe

T Hormal lw thea atre loaded
st ot ated fram the auto-losd zcreen ta
Fooeil o

£ The woed MON Tram the model fas been rerlaced ba the watkd BRSIC,
which will reload the BASIC intererotoe and 30 Lo the comsole mode.
CRUTTION: e suwre and do 3 FLUSH before returning ta BRNSIC to auaid
losimg 2me Jdisk modificst 10mE.

L

T

comFrlsing a3 sinsgle FORTH
reaulred under (S-a54,

. 1l references to multirle
Cesi Miaune Deah P bz s 15 1.

EMHRMCEMEHTS,

B onumber of useful routines have teern i noluded with the swustem. Each
is described below, Flesze mote that these routines were witittern ba us
“armd zre HOT in the sublic uurn:sl .

TEHHT“HL F DQIHTER Too =s in arder to make dealing with the terminsl
i a number of uzetful words baue beern derfimed on
SOPEEE & thru . These words are well commented and should be
clif—exelamztorg, ’

I The words LIST. IMHDES, TRIAG. amcd ULIST slomg with
ting woirds sre def imeo i soresns 9 otheu 11, Twa tapes i
TIE e mads to trwe-atarJ-rcjammﬂds. The first three woe-ds

oFerate differentla do
21w Frinter, Alzo. the

—

OOt soresns Cdetimed b

1[‘::4 o et e e Cdt.Eut 1% 1o
=1 11153 wWwrds have been moditied Lo

o] p,_y.

3t

MoOSUFRORT: Doreen 18 adds zoms wor-ds wsetTul in dealinsg
FEes LR L Om MU

word DISE which mas be

1% detines the us.ed
arsunere on the dizi., Thiz ward maw be ysed
Sard 85U disk files. For an examnsle of it = uso.

ectorag Wuords.,

constant TCE.D This 1= the lacation of the
v ESUL You mas chanse the current di-ive o
e FroEer walue 3t this sddreso. I1.E.. Lo
doc M1OTCE Gl 811 further disk access would

ol ains 3 derer

al
T S « The zamtags ol the ca
EmB ! LT S

DO-CRTSES

“hopa)

mumber t.o teot on Lor af stack 2

r . itT o= tas thern do everwthing et ween
. CHESE and ESRC. then corntinue execution
- aiter CASES-DOME. This constiruct can
- e rereated armw mumtier of times, 3

E=lares | :'f.-csf..x—:ruux = ttt:'f_-hlt:'t?ﬂ the last CHZE. E=HC
Fair Wwill be swecuted 11 nome of the
_—

"Ulnu— Cazes was truys. D

lap DIRECTURYS Soreens 21 thiea 27 defines wor-dzs whiich emulate the
ERZIC srogram "OIR". Onoe loaded. twsing DIF Will dizrlag the &5U dizlk

directoro. FREN DIRFE will zend the directorw to the rFrinter. Hote:
soreens 18 and 19 must be lozded before loasding sCrearn 1.

FIMD FILE I DIRECTORY: Soresen 42 defines the ward FINGFL which will
zesr-oty the OS-250 directora for & mSiven i le name. The WoE-od TEST iz
glzo defined 3z am example of Bow Lo use FIMDFL.,

Betore oallind FIMDFL. the mame of the file ta e foumd must be at
HERE im the mormal fazshion left ba the word WORD, i.e.. the Tirst bute

iz the lemath followed b the Tile rane. It the file rname is not
Taund. the onl=z entrs on the stack after calling FIMDFL will be the
boolesn Tlag O Lo denols Failure. IT the Mams 1= founu, a 1 will he
the Tirst entra on the stack, Tollowsd bu a double fFrecizion file
lemath. amd & doublde Frecizicon dizb addresc These entries may be used
with ths erH DIZE defined om screen 19 ta do disk I-0 on 3 standard
=Sl datz 7ile.

definitiaon:s on worsern 2

pras

i. Therefare. either the
cdifac +-ru must be loaded Fricor o loading =Coreen 38,
of =oreern 21 onla maw be loaded.

[t} g

ARG MUMEBER GERHERATOR: Soreen 33 containe = =imrle random number
routine which allows srecituing the lowsst and bighest 31lcwed
SR =Tt

3 detimes the mowd 5F 0 which will
o =

comtents of th t.mc im baoth decimal
wWorg diuring Lhe debu4§1n3 Fracoos,

JOAD ASSEMELER: Soreern 35 contaims an altermative waw Lo Lise
md fig szsembler Yon soreens 17 - 172, Hormalls the fig
i loaded. then =ra -equzrwd code words are defined. The
e wiith thi iz that the aszembler cccurics about 12868 hutes

{ = i
which e ot used once the code words are comsiled.

Soresn 35 will lasd the szzembler in high memora. After all resuire
coae words are defined. executinsg the word KILLLAZEM will remoue the
aszemnbler. Therefore. code words maw e uzed without the 1368 bwte
oL hesd wiicoh is mormsl Do reaudired,

Mt this Lime. there 1= =til1 a tag® in the load-unlasd
sler which will oreste problemns 17 another wocsbulasra bas beon
med atter soreen 35 iz loaded. Until thiz 1= 11 ~ud we strongla
st that a5ll words detfined vhobh code and high-leuvel? betwesern +Lhe

soteen 35 1s loaded a;d KILL.ASSH ic executed chould sSo in the

Cabel] @l

GET-FUT COMPILED CODE: The nmormal method of executing a FORTH
aFFrlication iz ta leoad the reauired colon detipitians fram disk and
ther execute them. The onla ditficulta iz that loading o

gefimitians

=5 TEE wlwli=] l irng them. While the) FaeTH comFl ler i< Taat, it is

certainlya not imstantaneous., ThEFQTUF@» it canm take mare seconds to
Toad ewen 3 relatively =mall aFrFrlication.

Far- develorment surFoses. the s=reed of the LOAD iz mot 3 bl em. it
Tor turn—lew sustemz. execubion of an arrlication =hould be as fazt

s
Fomzibhle.,

R Qry sCresnE Jo - 33 zllow ztoring compiled code on disihs

ardd then alling them for use later at extrems hisbh sreed. This iz

dorme e usindg the word PUT to write the memord imade of comeiled wokde

o disks then using the word GET 1o recall them.

The woe-d FPUT is wus az <zoresn #r PUT <rmesmelr. where =creen # 0 is the

first sorszen the comriled code will occurw, and rname i the pame of
word i the dictionasrs to be put to dizk, ©

bt
st |.|‘|

the firzst the following
WoOE UFE fw HiRE are ssuved. Flesse note that uarishles and constants
carn e Put o disk Just 3

= colon detimed words can.
The word GET 1= used zs Jsorecn #> GET. whereo soireen # i the first
- =1 rut cods. A mador word of

resen containing Froudou caution: The
N &

ame conditicon &

Adaonard . MUST be i exmzcotla the S whern Lhe

coriesFondindg FUT wss executed. IT it iz ot Jdo can exFrect the
swstem Lo Just So totalla ocut to lunch.
Thiz i= ot a2 limitstion. bubt a resuirement for doing the GET in ihe
Fazhion we ars. GET iz rob 3 relocating linking loader,. but = simFle
dizin Lo memors routine. While we could have witten GET to allow
losding code onto 3 modified dicticnara, the extrzs Frocessing reauirod
wowld probatls haoe reauired as much time Cor euen more!d as the
mormal LOAD commamd.

L EDIT. LIST. and IMGEY havse been modified to word

The words LOAD
th oboect code soreemnz. Bttemeting t.a LORD (a eEDIT i

coprest lw o wi

ofiect. eoreen will ZFios am error. LISTing an obdect soresn will show
the starting and endins memorw addrezzes and length of the PUT block.

TERMIMAL ORIENTED EDITOR: e ve zzuwed the best
suer used the standard fig editor, wou Boow it
be desire Soresms 294 thru 32 contzins 3 usrwg
FORTH =zcreen editor.

The mormal method Tor editing 2 scoreen iz ba the command otreen #
ELIT. This= will clesr the scresn. list the coreen in Lhe uFFeF For-Lion
ot the disrlaw, and Fosition the cursor at the beginning of line Zera.
H mumbee of control functions are zllowed to simelifw entr4 and
editing of zcreen data.

1y The cursor control kewsss uf. down. lett. amd Figbt: mas be tized

to =yt tha :urrﬂP amgunere on the dizelag within the zoresn. 811

Tow functions "wrese around”. i.e.. Frecsing the ue artow at the

tor lime will move the cursce o the =zame column o the bottom
=

lipe, Likewize., pPressing the left zrrow
lime will movs the cur=or to the end of

-
7.

Iw

at the bedimnning of a
Freuious line.

o+
-
1

2y The tab kew will mowe the curzoe to the rigbt ba the mumber of

g contained in the uariahle TREAMT. Shiftt tab will moJie the
curzor to the left be the zame amournt. TABAMT i initisllu losded
with =ight. but mage be modified to ams waluse woy desire. The tab
tumct.ion 5153 Wwill wrar around.

N ey of o'} SRR st T T

33 CTRL E will eraze the line comtainins the curscr,

43 CTRL % will imsert 3 blamk limne at the Fosition of the cursor.
Lime 15 will be 1c

SR Dwn]l delete the line comtaining the cursce and mouve =1l
followinsg lines ue. Lime 15 will be 1l ant.

£ CTRL B ow1ll imzert a3 =ingle hlsnpk at. the current cursor
Frositicn. HI remzsining characters on the line will be moved to the
right., The last charascter on the lime iz et

T3 The dele
ousor, H1l
let™. The 1

2 Wwill remcve the character Frresently undsr the
inimg charascterzs on the lime will be moved to the
hizracter om the lime will be 3 ZFace.

2 ETRE—F and CTREL O woirk in condunction with each other. CTRL &
Wwill =zawe the lime comtaiming the cur-sar at. PARD. CTRL O will
erlace the lime contaiming the curoce with the line Erevicouslwa
zaved with CTRL AN Thiz zllows mouing o lime from one location Lo
ancther on 3 soresn. oF moving & line Tr-om omne soreen o anothee.

[
‘.

0 CIRE-T will poszition the cursor to the begdinning of lime zero.

1@y The escare kew will end editing ot the current zcreen. IT™ amas
moditicaticms were made. the scoresn will be marbed a3z urdated,

ausilsble within Lhe ELITOR vocsbulary are sewveral other helerful

. P owicrd M owill edit the mewt soreen. The word 5 will re—-edit

lazt screen edited. The woed B will edit the Frevicus screen.
ecreen #x CLEAR will Fi11 the giuen soreen Wwith blanbkz. <from screen>
“to soresm> COPY will coru the Trom =Creen anto the to soroeen.

I 5 comrile-time error ococurs, the woed WHERE mas be used to edit the
=oreen containing the error arnd Floce the cur-zar 3t the location of

IMSTHLLATICH FROCEDURE.
He with s rurchased sofTtuare. the first thing wou =hould do is cordg
Lhiz disk, and rut the originasl awad. The original disk =hoyld R T=INI=Y o
e modiftioed,

IT7 o will be usi;s cue FORTH on 3 hard disk, wow will need to creaste
thres Tilss on the Jdisk. The twa files FORTH and ERSIC <should be

created at the same size for largsr) as shown on the florpd. The file
SCREEM maw ke orested as largde &z wou wiszh max size 1s &4d
Medabwtez!d, Thiz iz the Tile which contains the FORTH disk Twark
sFace”. Each ome K of dizb srace Will Five vou one FORTH ccreon.

The file FORTH iz & BRASIC Frodiram which is run to indtizte FORTH. It
maz be loaded from the florEd and zaved Lo the hard disk, The {ile
BREZIC iz 3 word Tile to Biold the EAZIC interFreter while FORTH 1=
sxecuting. It mesd not be coried. The tile SCREEH maw be moved using
the OS1 utilita COPYEI.

fot

I 3 larger SUREEM file iz created, Lhe new zcreens should be Cleared
et mre using them. Sssume Qoy creste 3 one medatuete Tile far SCREEM
T1E24 soreenz). The fo Wing word shouwld be define and execute

Wi e
U et
1

efore gttemeting o u
OCLERM EDITOR iGss

e Lhe mew scoresns

22 DO I CLEARR LOOF

2

=ASE-0 § the {Tollowing
B shionld be used Lo prerare a working disk, Flace =0 05-65U
digiC s ochmine A oand a blambk dizk in dr-iue B. o Usirs the COPTER utbilitw,
iritaaslize Uhe disk in drive B and corw the opersting cwstenm onto it
oo dp%qe A. Ferlace the disk in driuve A wiwh the delivered FORTH

\£ YO wi1ll bee uzing FORTH on & Tloer . Loed swustem, tF

Cdyzh. ool oo the Tiles trom drive B to B

FEQUIRED MR ICRTIOHS.

1

oo oo 1a raod 1ficatirﬁa tHhat uill normu‘f D& resuired belves 40U Can
[' 1

-
tgle sdvantad: of all i T=) <istins FoRTH defimitions ore in the
terminal and Frirter awéa. AH11 aﬁrn'/zl ar-iented coaryands are
deliverad =2l ur for 3 Micro—Tern. inc. ACT-SA. It wow are using
arcther tere of terminzsl, certain o Gl **;“"-’? must be made.

Since the terminal oriented editor WLl mot fusctics w1l these
chomges are mads, 3 minimsl lime or'e ted editor is provided on
sorzens 4% and 46, After loading this., a =creen mas be modifued ba
tweing EDITOR. then LISTing the reauired acreen. sod uszrtme the

ol lowing commandst

L2 The L command will relist the current screorn and chow anw
ohamass which have been made.

<line #y F dtext> ¢ The F command g the mathod used to rut text on
a screen. The entered fesxt will replace the exictins line- Azt a.

qute that 2t lezzt one zrace mvst Tollow +he text. butr the first
zrace will not be FUt o the screen. .
Sliree #> S 2 T -1z the same as ¥he CTRL S 10 dhe video editan
~]1nw #> £ @ Zazms zz the Hi;ef = CTREL E.
“lime #> D o2 = 3= the wvideo’z CTRL D,
slime #% + 3 Hold the desisnated line at PAD.
Tline #r & 1 Rerlace the line with ths datz reld >4+ PRD.
<lime #> I @ Inmsert the datzs at FRD st the lime enterad amd meeJ&

fallrwing lines down. Lime 15 is lost.

The words CLERR and COPY sre also srowided. Thgy are +he zames ¢ those
wnder L@ widen editrr. ‘

Tz onle oharcies that should e reauired gre on soreens & tiru 2 and
20 theewr ZG, IT —oq at~e not usind a zerda)l Frinter aBH:IL deuvice $#33.,
then dhe valuz of the comebant PRNUAL %0 zcreen € chould hbe chanded.
The rrorsr yvalue for a Farallel Printor would Be 108, Foe & deuice - &
ger-ial Frintdr. dhe vslue would be 8. The 8C EMIT o Pie 4 of zoresn
7ozhauld be chandged to uhatever ig resuired to oleoe Lhe o SCvenEn on
wour terminzt. | g ige. the 14 EMIT on line & of =creen & should be
et to the cupasr g't;.nxné command. I qour terminal resuires the
column addre etore the row address, then put 3 SWAF before the lac

twoa EMITs on fnyg lime.

[
3

The rosgithle anansSe:s ecreenz 28 theu 38 are in ithe terminal
wriented aditor. In Farticwior. the codes for the ur, downs lett. and

Fight arrow Keds mad require charding. Note that the codes for

eacty
b= iz am - decimzl.

e z511 Lhﬂf’“@ R =]

Fzern made. executing S LOS0Y will recomnsl le all
detinitiaong guﬂde4 at Dot and zave the ooeiled code. Executinsd the
vetd "COLDY il ther maie the changes errective.

S

b

) (AR

ST OE MO TOATTOMNS

Ggite often it 1z better o
tpacoen mather than one 1arge
LI O of FURTH. The base diazk

1z SOREEMHD iz comtai
anotner rile for the wori =

FORTH dizk worhk
be dome with this
1le used by FORTH

=N0 zera., Ta chamnde T
TFace, Jdust =tor . oFer disk address

The dizk

booaddress iz 3 double precizion rumber . 1o, . 4 bates, IT™ the
dowdbde srecision tools ze loaded, the D! maw be wzed to Pt the
preooFer waluwe 3t zero. T net. th iz 4ddP‘EE Wwill rmesd to be becluen
into twn Fleces and stored at orderd and two Chigh cedero.

Changingd from one Tlorerd disk dirive to ancthers Oyl ~eaulires storins
the proFer ualiae at sdoe LeAl hex. If the disk 1.0 zureoit tools
T wl= i = wialue is stored in L comstant TCER dtransfer combirol
Blooi . ihl‘ valtive 1= 3 zingle bute: @ - 4 o ditrives H - D, It maw be
et with the ! word.

17 either of the abouve chandes are made., wou should Frecede them with
a rLUzH to write anw urdated buffers to dizk. arvd an EMPTY-BUFFERS Lo
Frrevent. CoRding ower and existing bt Ters to the mew dishk ares.

1]

Fleasse note Lhat this FORTH will accert coreen mumbeer-s outzide of the
lesal rangs for the file used s the dizhk word srace. Thiszs was dome Lo
2llow acce i3 otbther &5 disk files wusing the stamdard FORTH woide.
=k Z BUFFER amd BLOCK.

M COHTLUSION. L.

He with 3ll our erraductz. we at Software Comszultants fulle support our
FORTH. IT =ouw have ams susstions o Froblemns. do not F'“ltaf o
comtact ds. We would prefer that problems be communicated ba mail., =X ul
that =ou mad provide as much detzil as Fossible in defining the
Firroblem. and we maw be 3z ewplicit as ozzible with our answse.
Howswer. unlike some vendors Cwho zhall remain mnamelessd, we will
2ladla sreak to wou bw rhons i oy have an imnmediste mesd.

uzidal . the SO FORETH iz auzilable on disk for owe
Srpdard F1E, 8 2. Due to the large zize of the SO it
moh. Soapas Al =) czembt] e ulf“ the =ztandard 0% sssembler. The
—uur:e 1 delivered set uPr Tor sssemble wusimg the Fegdatuz Software
zcambler,

interpreters of comellers. the FORTH SOLCE 1
{7, Modificestions are mormslly much exzisr Lo make
3 i3 Y = O lamsusgs, IS A P =g
and Teel Lhat certain things could ke dome e

»odumE in! It reallu is guite 3 1ot of fun!

While thiz FORTH
ot Yewtezst, it i

s comFElat z delivered, and euen includes 3 mumbers
b Mo me the end of the lirme. We irtend to of e
szeEral sdditions in the mear futuros. Strimad handling and Tlosting
Folnt routinss are currertly working in house, and will be 1
shortla, Buven more exciting develorments are on the drawing bosed,
o Tar our mds,

W b
u’ [T

=4
A

i

i

llll{lllllllllllllIllllllllllllllllllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIllI|lIIII|IIlII!lIIIllllllllllllIll|l|lllllllll|IIIllllli|lll|lllllllllllllllllllllllllllllllllllllll|l|llk

E

#IBIRIBIBIEIBIBIBIBIBIBIBIBIBIBI MG BIBOIBIBIEIBIBHEIB B+ R 5181 D BB DIBLB IRIBIDIQ GBI BI040 10 1 BIBIZHR B BIB1B1E 1018401518 1DIRIBISIBIBMIBIBIRISIRIEIRI 01818

« c|mmumuammnm;wwmmmmmm||ummlmlmmwmmmmmummuumlmmmmmmwmg

fig-FORTH

INSTALLATION MANUAL
GLOSSARY

MODEL

RELEASE 1
WITH COMPILER SECURITY
AND

VARIABLE LENGTH NAMES

BY
WILLIAM F. RAGSDALE

AUGUST 1980

Provided through the courtesy of the Forth Interest Group, PO, Box 1105,
San Carlos, CA 94070,

Further distribution of this public domain publication must include this notice,

mlllllllllllllllllIlllllllllllllllll!lllII|llIIlIIIlIIll!IIIlIIl|lII|IIIIIIl!lIIIIlIlIIIIIIIIIIIII'IIlIIIIllIlIIllllIl!llillIlllllllllIIIIIlllllllllIlllIl(I!IIIIIllllllllllll!lIlIIllllllllllllllllIl!l|l|l|lllll!lllllll|l|IlllllllIllllmll

FORTH INTEREST GROUP ----« P0O. Box 1105 +++-- San Carlos, Ca. 94070

f1g-FORTH INSTALLATION MANUAL

1.0 INTRODUCTION

2.0 DISTRIBUTION

3.0 MODEL ORGANIZATION
4.0 INSTALLATION

5.0 MEMORY MAP

6.0 ._DOCUMENTATION SUMMARY

1.0 INTRODUCTION

The fig-FORTH implementation project occurred
because a key group of Forth fanclers wished
to make this valuable tool available on a
personal computing level. In June of 1978,
we gathered a team of nine systems level
programmers, each with a particular target
computer. The charter of the group was to
translate a common model of Forth into assem-
bly language listings for each computer. It
was agreed that the group’s work would be
distributed in the public domain by FIG. This
publication series is the conclusion of the
work.

2.0 DISTRIBUTION

All publications of the Forth Interest Group
are public domain. They may be further
reproduced and distributed by inclusion

of this credit notice:

This publication has been made available
by the Forth Interest Group,

P. 0. Box 1105, San Carlos, Ca 94070

We intend that our primary recipients of the
Implementation Project be computer users
groups, libraries, and commercial vendors.

We expect that each will further customize for
particular computers and redistribute. No
restrictions are placed on cost, but we

expect faithfulness to the model. FIG does
not intend to distribute machine readable
versions, as that entails customirzation,
revision, and customer support better reserved
for commerical vendors.

Of course, another broad group of recipients
of the work 1s the community of personal
computer users. We hope that our publications
will aid in the use of Forth and increase

the user expectation of the performance of
high level computer languages.

FORTH INTEREST GROUP ----- PO.

3.0 MODEL ORGINIZATION

The fig-FORTH model deviates a bit from the
usual loading method of Forth. Existing
systems load about 2k bytes in object form
and then self-compile the resident system

(6 to 8 k bytes). This technique allows
customization within the high level portion,
but is impractical for new implementors.

Our model has 4 to 5 k bytes written as assem-
bler listings. The remainder may be compiled
typing in the Forth high-level source, by

more assembly source, or by disc compilation.
This method enhances transportability,
although the larger portion in assembly code
entails more effort. About 8k bytes of memory
is used plus 2 to 8k for workspace.

3.1 MODEL OVER-VIEW

The model consists of 7 distinct areas. They
occur sequentially from low memory to high.

Boot-up parameters

Machine code definitions

High level utility definitions
Installation dependent code
BEigh level definitions

System tools (optional)

RAM memory workspace

Box 1105 ----- San Carlos, Ca. 94070

3.2 MODEL DETAILS
Boot-up Parameters

This area consists of 34 bytes containing a
jump to the cold start, jump to the warm
re-start and initial values for user variables
and registers. These values are altered as
you make permanent extensions to your
installation.

Machine Code Definitions

This area consists of about 600 to 800 bytes
of machine executable code in the form of
Forth word defintions. 1Its purpose is to
convert your computer into & standard Forth
stack computer. Above this code, the balance
of Forth contains a pseudo-code compiled of
"execution-addresses'" which are sequences

of the machine address of the "code-fields"
of other Forth definitions. All execution
ultimately refers to the machine code
definitions.

High-level Utility Definitions

These are colon-definitions, user variables,
constants, and variables that allow you to
control the "Forth stack computer". They
comprise the bulk of the system, enabling

you to execute and compile from the terminal.
If disc storage (or a RAM simulation of disc)
is available, you may alsc execute and compile
from this facility. Changes in the high-level
area are infrequent. They may be made thru
the assembler source listings.

Installation Dependent Code

This area is the only portion that need
change between different installations of the
same computer cpu. There are four code
fragments:

(KEY) Push the next ascii value (7 bits)
from the terminal keystroke to the
computation stack and execute NEXT.

High 9 bits are zero. Do not echo this
character, especially a control character.

{(EMIT) Pop the computation stack

(16 bit value). Display the low 7 bits
on the terminal device, then execute
NEXT. Control characters have their
natural functions.

(?TTERMINAL) For terminals with a break
key, wait till released and push to

the computation stack 0001 if it was
found depressed; otherwise 0000.

Execute NEXT. If no break key is avail-
able, sense any key depression as a
break (sense but don’t wait for a key).
If both the above are unavailable,
simply push 0000 and execute NEXT.

(CR) Execute a terminal carriage
return and line feed. Execute NEXT.

When each of these words 1is executed, the
intepreter vectors from the definition
header to these code sequences. On

specific implementations it may be necessary
to preseve certain registers and observe
operating system protocols. Understand the
implementors methods in the listing before
proceeding!

R/W This colon-definition 1is the
standard linkage to your disc. It
requests the read or write of a disc
sector. It usually requires supporting
code definitions. It may consist of
self-contained code or call ROM monitor
code. When R/W is assembled, its code
field address 1s inserted once in

BLOCK and once in BUFFER.

An alternate version of R/W is
included that simulates disc storage
in RAM. If you have over 16 k bytes
this is practical for startup and
limited operation with cassette.

High-level Definitions

The next section containe about 30 definit-
ions involving user interaction: compiling
aids, finding, forgetting, listing, and
number formatinge. These definitions are
placed above the installation dependent code
to facilitate modification. That is, once
your full system is8 up, you may FORGET part
of the high-level and re-compile altered
definitions from disc.

Sytsem Tools

A text editor and machine code assembler are
normally resident. We are including a sample
editor, and hope to provide Forth assemblers.
The editor is compiled from the terminal

the first time, and then used to place the
editor and assembler source code on disc.

It 18 essential that you regard the sassembly
listing as just a way to get Forth installed
on your system. Additions and changes must

be planned and tested at the usual Forth high’

level and then the assmbly routines updated.
Forth work planned and executed only at an
assembly level tends to be non-portable, and
confusing.

RAM Workspace

For a single user system, at least 2k bytes
must be available above the compiled system
(the dictionary). A 16k byte total system
is most typical.

The RAM workspace contains the computation
and return stacks, user area, terminal input
buffer, disc buffer and compilation space
for the dictionary.

FORTH INTEREST GROUP ----- PO. Box 1105 ----- San Carlos, Ca. 94070

4.0

INSTALLATION

We see the following methods of getting a
functioning fig-FORTH system:

1. Buy loadable object code from
a vendor who has customized.

2. Obtain an assembly listing with
the installation dependent code
supplied by the vendor.

Assemble and execute.

3. Edit the FIG assembly listing
on your system, re-write the
1-0 routines, and assemble.

4. Load someone else’s object code
up to the installation dependent
code. Hand assemble equivalents
for your system and poke in with
your monitor. Begin execution
and type in (self-compile) the
rest of the system. This takes

about two hours once you under-
stand the structure of Forth (but
that will take much more time!).

Let us examine Step 3, above, in fuller
detail. If you wish to bring up Forth only
from this model, here are the sequential
steps:

4.1 Familiarize yourself with the model
written in Forth, the glossary, and specific
assembly listings.

4.2 Edit the assembly listings into your

system. Set the boot-up parameters at origin
offset 0A, OB (bytes) to 0000 (warning=00).

4.3 Alter the terminal support code

(KEY, EMIT, etc,) to match your system.
Observe register protocol specific to your
implementation!

4.4 Place a break to your monitor at the end
of NEXT, just before indirectly jumping via
register W to execution. W is the Forth name
for the register holding a code field address,
and may be differently referenced in your
listings. ' .

4.5 Enter the cold start at the origin. Upon
the break, check that the interpretive pointer
IP points within ABORT and W points to SP!.

If COLD is a colon-definition, then the IP

has been initialized on the way to NEXT and
your testing will begin in COLD. The

purpose of COLD is to initialize IP, SP, RP,
UP, and some user variables from the start-up
parameters at the origin.

4.6 Continue execution one word at a time.
Clever individuals could write a simple trace
routine to print IP, W, SP, RP and the top of
the stacks. Run in this single step mode
until the greeting message 18 printed. Note
that the interpretation is several hundred
cycles to this stage!

4.7 Execution errors may be localized by
observing the above pointers when a crash
occurs.

4.8 After the word QUIT is executed
(incrementally), and you can input a "return"
key and get OK printed, remove the break.

You may have some remaining errors, but a
reset and examination of the above registers
will again localize problems.

4.9
keyboard,

When the system is interpreting from the
execute EMPTY-BUFFERS to clear

the disc buffer area. You may test the disc
access by typing: O BLOCK 64 TYPE

This should bring sector zero from the disc

to a buffer and type the first 64 characters.
This sector usually contains ascii text of the
disc directory. If BLOCK (and R/W) doesn’t
function--happy hunting!

5.0 If your disc driver differs from the
assembly version, you must create your own
R/W. This word does a range check (with
error message), modulo math to derive sector,
track, and drive and passes values to a
sector-read and sector-write routine.

RAM DISC SIMULATION

If disc 18 not available, a simulation of
BLOCK and BUFFER may be made in RAM. The
following definitions setup high memory as
mass storage. Referenced ‘screens’ are then
brought to the “disc buffer’ area. This is
a good method to test the start-up program
even 1f disc may be available.

HEX
4000 CONSTANT LO (START OF BUFFER AREA)
6800 CONSTANT HI (10 SCREEN EQUIVALENT)
: R/W >R (save boolean)

B/BUF * LO + DUP

HI > 6 7?ERROR (range check)

R> IF (read) SWA®P ENDIF

B/BUF CMOVE ;

Insert the code field address of R/W into
BLOCK and BUFFER and proceed as if testing

disc. R/W simulates screens O thru 9 when
B/BUF is 128, in the memory area $4000 thru
S$6BFF.

FORTH INTEREST GROUP ----- PO. Box 1105 ----- San Carlos, Ca. 94070

(|I

f1g-FORTH VARIABLE NAME FIELD

A major FIG innovation in this model, 1is

the introduction of variable length defin-
ition names in compiled dictionary entries.
Previous methods only saved three letters and
the character count.

The user may select the letter count saved,
up to the full natural length. See the
glossary definition for WIDTH.

In this model, the following conventions
have been established.

1. The first byte of the name field has the
natural character count in the low 5 bits.
2. The sixth bit = 1 when smudged, and will
prevent a match by (FIND).
3. The seventh bit = 1 for IMMEDIATE defin-
itions; it is called the precedence bit.
4. The eighth or sign bit is always = 1.
5. The following bytes contain the names”’
letters, up to the value in WIDTH.
6. In the byte contalning the last letter
saved, the sign bit = 1.
7. In vword addressing computer, a name may
be padded with a blank to a word boundary.

The above methods are implemented in CREATE.
Remember that —-FIND uses BL WORD to bring
the next text to HERE with the count preceed-
ing. All that is necessary, is to limit by
WIDTH and toggle the proper delimiting bits.

5.0 MEMORY MAP

The following memory map 1s broadly used.
Specific installations may require alterations
but you may forfeit functions in future FIG
offerings.

The disc buffer area is at the upper bound of
RAM memory. It is comprised of an integral
number of buffers, each B/BUF+4 bytes.

B/BUF 1is the number of bytes read from the
disc, usually one sector. B/BUF must be a
power of two (64, 128, 256, 512 or 1024).
The constant FIRST has the value of the
address of the start of the first buffer.
LIMIT has the value of the first address
beyond the top buffer. The distance between
FIRST and LIMIT must be N*(B/BUF+4) bytes.
This N must be two or more.

Constant B/SCR has the value of the number of
buffers per screen; i.e. 1024 / B/BUF.

The user area must be at least 34 bytes; 48
is more appropriate. In a multi-user system,
each user has his own user area, for his copy
of system variables. This method allows re-
entrant use of the Forth vocabulary.

The terminal input buffer is decimal 80 bytes
(the hex 50 in QUERY) plus 2 at the end. If a
different value is desired, change the limit
in QUERY. A parameter in the boot-up

literals locates the address of this area for
TIB. The backspace character is also 1in the
boot-up origin parameters. It is universally
expected that "rubout" is the backspaces.

The return stack grows downward from the user
area toward the terminal buffer. VForty-eight
bytes are sufficient. The origin is in RO

(R-zero) and 1s loaded from a boot—up literal.

The computation stack grows downward from the
terminal buffer toward the dictionary, which
grows upward. The origin of the stack 1s

18 in variable S0 (S-zero) and is loaded from
a boot-up literal.

After a cold start, the user variables contain
the addresses of the above memory assignments.
An advanced user may relocate while the

system is8 running. A newcomer should alter
the startup literals and execute COLD. The
word +ORIGIN is provided for this purpose.
+0ORIGIN gives the address byte or word rel-
ative to the origin depending on the computer
addressing method. To change the backspace

to contol H type:

HEX 08 OE +ORIGIN ! (byte addresses)

6.0 DOCUMENTATION SUMMARY
The following manuals are in print:

Caltech FORTH Manual, an advanced manual with
internal details of Forth. Has some implem-
entation peculiarities. Approx. $6.50 from
the Caltech Book Store, Pasadena, CA.

Kitt Peak Forth Primer, $20.00 postpaid from

the Forth Interest Group, P. O. Box 1105,
San Carlos, CA 94070.
microFORTH Primer, $15.00 Forth, Inc.

815 Manhattan Ave. Manhattan Beach, CA 90266

Forth Dimensions, newsletter of the Forth
Interest Group, $5.00 for 6 issues including
membership. F.I.G. P.0. Box 1105, San Carlos,
CA. 94070 !

FORTH INTEREST GROUP ----- PO. Box 1105 -:--- San Carlos, Ca. 94070

NdD 40
JIINIOd JADVIS SI dY
¥3LS1O3¥ X SI dS

a1l
NI

NIONO + #

avd

Ad¥d

asn

2059

-« ds
0100% - 600
XIVIS
-<—— Qm
M dl N dn 39Vd-2Z
¥344n4 _—| = o010$
?z:éﬂ\ —
- dy
_— " ovis ﬂ
NiNL3Y
-« &_mm
SIV¥3ILN dN-1008 00Z$
AYVYNOILDIQ
¥344N9 . QYOM. : dd
¥344N9 13l
- e
‘VIUV ¥3ISN dn
<— 1534
S¥344N9 Dsla
<— 1w
dYW AYOWIW HLIYO4-61y

NIORO + O —>

avd

il >

NI

Ayd —>

sn —>

dVW AYOWIW HILI¥Od4-B1y

STV¥aL N dN-1004

A¥VNOLLDIa

3344N9 . QIOM

¥3d 4Ng DAl

ADVIS ﬁ

~
¥isdng 7

P
TVNIWEL, H

~
- ADVIS
~ Nint3y

VIdv ¥3Isn

S¥3ddng Dsla

QIVANVLS

ddad

dS

gs

dd

gy

dn

1s31d

Uwn

FORTH. INTEREST GROUP -::-- PO. Box 1105 +-++- San Carlos, Ca. 94070 -

This glossary contains all of the word def-
initions in Release] of fig~-FORTH. The

definitions are presented in the order of
their ascii sort.

The first llne of each entry shows a symbolic
description of the action of the proceedure on
the parameter stack. The symbols indicate the
order in which input parameters have been
placed on the stack. Three dashegs "---"
indicate the execution point; any parameters
left on the stack are listed. 1In this
notation, the top of the stack is to the
right. -

The symbols include:

addr memory address
b 8 bit byte (i.e. hi 8 bits zero)
c 7 bit ascii character (hi 9 bits zero)
d 32 bit signed double integer,
most significant portion with sign
on top of stack.
f boolean flag. O=false, non~zero=true
ff boolean false flag=0
n 16 bit signed integer number
u 16 bit unsigned integer
tf boolean true flag=non-zero

FORTH

fig-FORTH GLOSSARY

The capital letters on the right show defin- -
ition characteristics:

c May only be used within a colon defin-
ition. A digit indicates number
of memory addresses used, 1f other
than one.

E Intended for execution only.

L0 Level Zero definition of FORTH-78

L1 Level One definition of FORTH-78

P Has precedence bit set.

Will execute
even when compiling. :
U A user variable.

Unless otherwise noted, all references to
numbers are for 16 bit signed integers. On

8 bit data bus computers, the high byte of

a number is on top of the stack, with the sign
in the leftmost bit. For 32 bit signed double
numbers, the most significant part (with the
sign) is on top.

All arithemetic is {implicitly 16 bit signed
integer math, with error and under~flow
indication unspecified.

INTEREST GROUP :---- PO. Box 1105 ----- San Carlos, Ca. 94070 4

{CSP

#s

")

(;CODE)

FORTH

n addr ——- L0
Store 16 bits of n at address.

Pronounced "store".

Save the stack position in CSP. Used

as part of the compiler security.

dl --- d2 L0
Generate from a double number dl, the
next ascii character which 1s placed
in an output string. Result d2 is
the quotient after division by BASE,
and is maintained for further pro-
cessing. Used between <# and #>.

See #S.

d =--- addr count LO
Terminates numeric output conversion
by dropping d, leaving the text
address and character count suitable
for TYPE. ’

dl --- d2 L0
Generates ascii text in the text out-
put buffer, by the use of #, until
a zero double number n2 results.

Used between <# and #>.

addr
Used in the form:
° nnnn
Leaves the parameter field address
of dictionary word nnnn. As a comp-
iler directive, executes in a colon-
definition to compile the address
as a literal. If the word is not
found after a search of CONTEXT and
CURRENT, an appropriate error mess-
age is given. Pronounced "tick".

P,LO

Used in the form:

(ccce)
Ignore a comment that will be
delimited by a right parenthesis
on the same line. May occur during
execution or in a colon-definition.
A blank after the leading parenthesis
is required.

C+
The run-time proceedure, compiled by
" which transmits the following
in-line text to the selected output
device. See ."

Cc
The run-time proceedure, compiled by
;CODE, that rewrites the code field
of the most recently defined word to
point to the following machine code
sBequence. See ;CODE.

INTEREST GROUP

-«++« PO. Box

(+LOOP)

(ABORT)

(D0O)

(FIND)

(LINE)

(LOOP)

(NUMBER)

*/

* /MOD

n --- c2
The run-time proceedure compiled
by +LOOP, which increments the loop
index by n and tests for loop comple-
tion. See +LOOP.

Executes after an error when WARNING
is -1« This word normally executes

ABORT, but may be altered (with care)
to a user’s alternative proceedure.

: c
The run-time proceedure compiled by
DO which moves the loop control para-
meters to the return stack. See DO.

addrl addr2 --- pfa b tf (ok)

addrl addr2 --- ff (bad)
Searches the dictionary starting at
the name field address addr2, match-
ing to the text at addrl. Returns
parameter fileld address, length
byte of name field and boolean true
for a good match. If no match is
found, only a boolean false is left.

nl n2 --- addr count
Convert the line number nl and the
screen n2 to the disc buffer address
containing the data. A count of 64
indicates the full line text length.

c2
The run-time proceedure compiled by
LOOP which increments the loop index
and tests for loop completion.
See LOOP.

dl addrl --- d2 addr2
Convert the ascii text beginning at
addrl+]l with regard to BASE. The new
value 18 accumulated into double
number dl, being left as d2. Addr2
is the address of the first uncon-
vertable digit. Used by NUMBER.

nl n2 --- prod Lo
Leave the signed product of two
signed numbers.

nl n2 n3 --- né4 LO
Leave the ratio né4 = nl*n2/n3
where all are signed numbers. Ret-
ention of an intermediate 31 bit
product permits greater accuracy than
would be available with the sequence:
nl n2 * a3 /

nl n2 n3 --- n4 nS LO
Leave the quotient n5 and remainder

n4 of the operation nl*n2/n3
A 31 bit intermediate product is

used as for */.

1105 ----- San Carlos, Ca. 94070 -~

+1

+BUF

+L0O0OP

+ORIGIN

FORTH

nl n2 =--- sum LO
Leave the sum of nl+n2.

n addr --- LO
Add n to the value at the address.
Pronounced "plus-store".

nl n2 --- n3
Apply the sign of n2 to nl, which
is left as n3.

addl - addr2 f
Advance the disc buffer address addrl
to the address of the next buffer
addr2. Boolean f is false when addr2
is the buffer presently pointed to
by variable PREV.

nl --- (run)

addr n2 --- (compile) P,C2,LO
Used in a colon-definition in the
form:

DO +... nl <+LOOP

At run-time, +LOOP selectively
controls branching back to the cor=-
responding DO based on nl, the loop
index and the loop limit. The signed
increment nl i8 added to the index
and the total compared to the limit.
The branch back to DO occurs until
the new index 18 equal to or greater
than the limit (nl>0), or until the
new index is equal to or less than
the 1imit (nl<0). Upon exiting the
loop, the parameters are discarded
and execution continues ahead.

At compile time, +LOOP compiles

the run-time word (+LOOP) and the
branch offset computed from HERE to
the address left on the stack by
DO. n2 is used for compile time
error checkinge.

n --~ addr
Leave the memory address relative
by n to the origin parameter area.
n 18 the minimum address unit, either
byte or word. This definition is used
to access or modify the boot-up
parameters at the origin area.

n ——-- LO
Store n into the next available dict-
ionary memory cell, advancing the
dictionary pointer. (comma)

nl n2 --- diff LO
Leave the difference of nl—n2:

P,LO
Continue interpretation with the
next disc screen. (pronounced
next-screen).

-DUP

~FINKD

nl -~ nl (1f zero)

nl -- nl nl (non~zero) LO
BReproduce nl only if it is non~-zero.
This is usually used to copy a value
just before IF, to eliminate the need
for an ELSE part to drop it.

-~- pfa b tf (found)

- ff (not found)
Accepts the next text word (delimited
by blanks) in the input strean to
HERE, and searches the CONTEXT and
then CURRENT vocabularies for a
matching entry. If found, the
dictionary entry’s parameter field
address, 1its length byte, and a
boolean true is left. Otherwise,
only a boolean false is left.

~-TRAILING addr nl .--- addr n2

«LINE

+R

/M0D

Adjusts the character count nl of a
text string beginning address to
suppress the output of trailing
blanks. i.e. the characters at
addr+nl to addr+n2 are blanks.

a ——- . LO
Print a number from a signed 16 bit
two’s complement value, converted
according to the numeric BASE.

A trailing blanks follows.

Pronounced "dot".

Used 1in the form:

" ccee”
Compiles an in-line string cccc
(delimited by the trailing ") with an
execution proceedure to transmit the
text to the selected output device.
If executed outside a definition, ."
vill immediately print the text until
the final ". The maximum number of
characters may be an installation
dependent value. See (.").

line scr --=
Print on the terminal device, a line
of text from the disc by its line and
screen number. Trailing blanks are
suppressed.

nl n2 ---
Print the number nl right aligned in
a field whose width is n2. RNo
folloving blank is printed.

nl n2 =--- quot - LO
Leave the signed quotient of nl/n2.

nl n2 ~--- rem quot LO
Leave the remainder and signed
quotient of nl/u2. The remainder has
the sign of the dividend.

INTEREST GROUP ----- RO. Box 1105 ----+ San Carlos, Ca. 94070

-

0=

OBRANCH

1+

2+

; CODE

FORTH

-==- n
These small numbers are used so often
that is is attractive to define them
by name in the dictionary as const-
ants.

n --- f ‘ LO
Leave a true flag if the number is

. less than zero (negative), otherwise

leave a false flag.

n --- f Lo
Leave a true flag is the number is
equal to zero, otherwise leave a
false flag.

f -- c2
The run-time proceedure to condition-
ally branch. If f is8 false (zero),
the following in-line parameter 1is
added to the interpretive pointer to
branch ahead or back. Compiled by
IF, UNTIL, and WHILE.

nl --- n2 L1
Increment nl by 1.

nl --- n2
Leave nl incremented by 2.

P,E,LO
Used in the form called a colon-
definition:

¢ ccce . e H

Creates a dictionary entry defining
cccc as equivalent to the following
sequence of Forth word definitions
‘ees’ until the next “;° or °;CODE’.
The compiling process is done by
the text interpreter as long as
STATE is non-zero. Other details
are that the CONTEXT vocabulary is
set to the CURRENT vocabulary and
that words with the precedence bit
set (P) are executed rather than
being compiled.

P,C,LO
Terminate a colon-definition &nd
stop further compilation. Compiles
the run-time ;S.

P,C,LO

Used in the form:
$ cccc ;CODE
assembly mnemonics

Stop compilation and terminate a new
defining word ceccc by compiling
(;CODE). Set the CONTEXT vocabulary
to ASSEMBER, assembling to machine
code the following mnemonics.

When cccc later executes in the form:
cececce nnnn

the word nnnn will be created with
its execution proceedure given by

by the machine code following ccec.
That is, when nnnn is executed, it
does 80 by jumping to the code after
nonne. An existing defining word
must exist in cccc prior to ;CODE.

<#

<BUILDS

>R

7COMP

7CSP

P,LO
Stop interpretation of & screen.
73S 18 also the run~time word compiled
at the end of a colon-definition
which returns execution to the
calling proceedure.

nl n2 ~--- f Lo
Leave a true flag 1f nl is less than
n2; otherwise leave a false flag.

L0
Setup for pictured numeric output
formatting using the words:
<§¢ ¢ #S SIGN #>
The conversion is done on a double
number producing text at PAD.
c,LO
Used within a colon~-definition:
¢t cccc <BUILDS ...
DOES> e ;
Each time cccc 18 executed, <BUILDS

defines a new word with a high-level
execution proceedure. Executing cccec
in the form:

cccc nnnn !
uses <BUILDS to create & dictionary
entry for nnnn with a call to the
DOES> part for nnnn. When nnnn is
later executed, it has the address of
its parameter area on the stack and
executes the words after DOES> in
cccce <BUILDS and DOES> allow run-—
time proceedures to written in high-
level rather than in assembler code
(as required by ;CODE).

nl n2 --- f LO
Leave a true flag if nl=n2; other-
wise leave a false flag.

nl n2 --- f LO
Leave a true flag 1f nl is greater
than n2; otherwise a false flage.

n -—-- c,L0
Remove a number from the computation
stack and place as the most access-—
able on the return stack. Use should
be balanced with R> in the same
definition.

addr -~ L0
Print the value contained at the
address in free format according to
the current base.

Issue error message if not compiling.

Issue error message if stack position
differs from value saved in CSP.

INTEREST GROUP ----- PO. Box 1105 ----- San Carlos, Ca. 94070

?TERROR

?7EXEC

7LOADING

?PAIRS

?STACK

?TERMINAL

ABORT

ABS

AGAIN

ALLOT

AND

f n ---
Issue an error message number n, if
the boolean flag 18 true.

Issue an error message if not exec-

uting.

Issue an error message 1if not loading

nl n2 ——
Issue an error message if nl does not
equal n2. The message indicates that
compiled conditionals do not match.

Issue an error message is the stack
is out of bounds. This definition
may be installation dependent.

-—= f
Perform a test of the terminal key-
board for actuation of the break key.
A true flag 1indicates actuation.
This definition 1is 1installation
dependent.

addr --- n LO
Leave the 16 bit contents of address.

LO
Clear the stacks and enter the exec-
ution states Return control to the
operators terminal, printing a mess-
age appropriate to the installation.

n --- u LO
Leave the absolute value of n as u.

addr n --- (compiling) P,C2,L0
Used in & colon-definion in the form:

BEGIN ene AGAIN
At tun-time, AGAIN forces execution
to return to corresponding BEGIN.
There is no effect on the stack.
Execution cannot leave this loop
(unless R> DROP 18 executed one
level below).

At compile time, AGAIN compiles
BRANCH with an offset from EHERE to
addr. n is used for compile-time
error checking-.

n --- Lo
Add the signed number to the diction~
ary pointer DP. May be used to
reserve dictionary space or re-origin
memory. n is with regard to computer
address type (byte or word).

nl n2 --- n% LO
Leave the bitwise logical and of nl
and n2 as n3.

B/BUF

B/SCR

BACK

BASE

BEGIN

BL

BLARKS

BLK

BLOCK

~-—= n

This constant leaves the number of
bytes per disc buffer, the byte count
read from disc by BLOCK.

~-== n

This constant leaves the number of
blocks per editing screen. By con-
vention, an editing screen 1is 1024
bytes organized as 16 lines of 64
characters each.

addr
Calculate the backward branch
from HERE to addr and compile
the next available dictionary
address.

offset

into
memory

addr u,LO
A user variable contaning the current
number base used for input and out-
put conversion.

addr n (compiling) P,LO
Occurs in & colon-definition in form:
BEGIN ... UNTIL
BEGIN cee AGAIN
BEGIN cee WHILE cee REPEAT
At run~time, BEGIN marks the start
of a Bequence that may be repetitive-
ly executed. It serves as a return
point from the correspoinding UNTIL,
AGAIN or REPEAT. When executing
UNTIL, a return to BEGIN will occur
if the top of the stack 1is false;
for AGAIN and REPEAT a returm to
BEGIN always occurs.

At compile time BEGIN leaves its ret-

urn address and n for compiler error
checking.

~——C
A constant that leaves the ascii
value for "blank".

addr count —_—

Fi11ll an area of memory begining at
addr with-blanks.

addr u,L0
A user variable containing the block
number being interpreted. If zero,
input is being taken from the term-
inal input buffer.

n =--- addr . . Lo
Leave the memory address of the block
buffer containing block n. If the
block is not already in memory, it is
transaferred from disc to which ever
buffer was least recently written.

If the block occupying that buffer
has been marked as updated, it is re-
written to disc before block n 1is
read into the buffer. See also
BDUFFER, R/W UPDATE FLUSH

FORTH INTEREST GROUP ----- PO. Box 1105 ----- San Carlos, Ca. 94070

BLOCY.-READ
BLOCK-WRITE These are the preferred names

for the installation dependent code
to read and write one block to the
disc.

c2,L0
The run-time proceedure to uncondit-
{onally branch. An in-line offset
is added to the interpretive pointer
IP to branch ahead or back. BRANCH
is compiled by ELSE, AGAIN, REPEAT.

BRANCH

n --- addr
Obtain the next memory buffer, ass-
igning it to block n. If the comn-
tents of the buffer is marked as up-
dated, it is written to the disc
The block is not read from the disc.
The address left is the first cell
within the buffer for data storage.

BUFFER

c! b addr
: Store 8 bits at address. On word
addressing computers, further spec-
ification is necessary regarding byte
addressing.

c, b
Store 8 bits of b into the next
available dictionary byte, advancing
the dictionary pointer. This is only
available on byte addressing comp-
uters, and should be used with
caution on byte addressing mini-
computers.

ce: addr --- b
Leave the 8 bit contents of memory
address. On word addressing comput-
ers, further specification is needed
regarding byte addressing.

CFA pfa =--- cfa
Convert the parameter field address
of a definition to 1its code field

address.

CMOVE from to count
Move the specified quantity of bytes
beginning at address from to address
to. The contents of address from

is moved first proceeding toward high
memory. Further specification is
necessary on word addressing comp-

uters.

COLD

The cold start proceedure to adjust
the dictionary pointer to the min-
imum standard and restart via ABORT.
May be called from the terminal to
remove application programs and
restart.

FORTH INTEREST GROUP

COMPILE

CORSTANT

CONTEXT

COUNT

CR

CREATE

CSP

D+

D+~

c2
When the word containing COMPILE
executes, the execution address of
the word following COMPILE is copied
(compiled) into the dictionary.
This allows specific compilation
situations to be handled in additon
to simply compling an execution
address (which the interpreter
already does).

n --- Lo
A defining word used in the form:

n CONSTANT cccc)
to create word cccc, with its para-
meter field containing n. When cccc
is later executed, 1t will push
the valye of n to the stack.

addr u,LO
A user variable containing a pointer
to the vocabulary within which dict-
ionary searches will first begin.

addrl --- addr2 n LO
Leave the byte address addr2 and byte
count n of a message text beginning
at address addrl. It is presumed
that the first byte at addrl contains
the text byte count and the actual
text starts with the second byte.
Typically COUNT is followed by TYPE.

L0
Transmit a carriage return and line
feed ‘to the selected output device.

A defining word used in the form:
CREATE cccc
by such words as CODE and CONSTANT
to create a dictionary header for
a Porth definition. The code field
contains the address of the words
parameter field. The new word 1is
created in the CURRENT vocablary.

addr U
A user variable temporarily storing
the stack pointer position, for
compilation error checking.

dl 42 dsum
Leave the double number sum
double numbers.

of two

dl n --- d2
Apply the sign of n to the double
number dl, leaving it as d2.

d --- L1
Print a signed double number from a
32 bit two’s complement value. The
high-order 16 bits are most access-
able on the stack. Conversion 1is
performed according to the current
BASE. A blank follows. Pronounced
D-dot. -

... PO. Box 1105 ----+ San Carlos, Ca. 94070 //

DABS

DECIMAL

d n ---
Print a signed double number d right
aligned in a field n characters wida.

d --- ud
Leave the absolute vslue ud of a
double number.

LO
Set the numeric conversion BASE for
decimal input-output.

DEFINITIONS L1

DIGIT

DLIST

DLITERAL

DMINUS

FORTH

Used in the form:

ccce DEFINITIONS
Set the CURRENT vocabulary to the
CONTEXT vocabulary. 1In the example,
executing vocabulary name cccc made
it the CONTEXT vocabulary and exec-
uting DEFINITIONS made both specify
vocabulary cccec. :

¢ nl --- n2 tf (ok)

¢ nl --- ff (bad)
Converts the ascii character ¢ (using
base nl) to its binary equivalent n2,
accompanied by a true flag. If the
conversion is invalid, leaves only
a false flag.

List the names of the dictionary
entries in the CONTEXT vocabulary.

(executing)

(compiling) P
If compiling, compile a stack double
number into a literal. Later execut-
ion of the definition containing the
literal will push it to the stack. If
executing, the number will remain on
the stacke. ,

dl -~~~ 42
Convert dl to its double number two’s
complement.

INTEREST

DO

DOES8>

DP

DPL

DRO
DR1

nl n2 --- (execute)

addr n --- (compile) P,C2,LO
Occurs 4in & colon-definition in form:

DO ... LOOP

DO ees +LOOP

At run time, DO begins a sequence
with repetitive execution controlled
by a loop 1limit nl and an index with
initial value n2. DO removes these
from the stack. Upon reaching LOOP
the index is incremented by one.
Until the new index equals or exceeds
the limit, execution loops back to
just after DO; otherwise the loop
parsmeters are discarded and execut-~
ion continues ahead. Both nl and n2
are determined at run-time and may be
the result of other operations.
Within a loop ‘I’ will copy the

urrent value of the index to the
stack. See I, LOOP, +LOOP, LEAVE.

When compiling within the colon=~
definition, DO compiles (DO), leaves
the following address addr and n for
later error checking.

LO
A vord wvhich defines the run-time
action within & high-level defining
worde DOES> alters the code field
and first parameter of the new word
to execute the sequence of compiled
word addresses following DOES>. Used
in combination with <BUILDS. When the
DOES> part executes it begins with
the address of the first parameter
of the new word on the stack. This
allows interpretation using this
area or its contents. Typical uses
include the Forth assembler, multi-
diminsional arrays, and compiler
generation.

addr u,L
A user variable, the dictionary
pointer, which contains the address
of the next free memory above the’
dictionary. The value may be read by
HERE snd altered by ALLOT.

addr u,L0
A user variable containing the number
of digits to the right of the decimal
on double integer input. It may also
be used hold output column location
of a decimal point, in user generated
formating. The default value on
single number input 1is -1.

Installation dependent commands to
select disc drives, by preseting
OFFSET. The contents of OFFSET is
added to the block number in BLOCK
to allow for this selection. Offset
ies supressed for error text so that
is may aslways originate from drive 0.

GROUP ----- PO. Box 1105 ----- San Carlos, Ca. 94070

e

DROP n ~--- LO

\ DUMP

DUP

ELSE

Drop the number from the stack.

addr n --- LO
Print the contents of n memory
locations beginning at addr. Both
addresses and contents are shown in
the current numeric base.

n --- n n LO
Duplicate the value on the stack.

addrl nl --- addr2 n2
(compiling) P,C2,L0

Occurs within a colon-definition

in the form:
1F cee ELSE ENDIF

At run-time, ELSE executes after the

true part following IF. ELSE forces

execution to skip over the following

false part and resumes execution

after the ENDIF. It has no stack

effect.

At compile-time ELSE emplaces BRANCH
reserving a branch offset, leaves
the address addr2 and n2 for error
testing. ELSE also resolves the
pending forward branch from IF by
calculating the offset from addrl to
HERE and storing at addrl.

EMIT [LO

END

FORTH INTEREST GROUP :---- PO. Box 1105 ----- San Carlos, Ca. 94070

ENCLOSE

Transmit ascii character ¢ to the
selected output device. OUT is
incremented for each character
output.

EMPTY-BUFFERS LO

Mark all block-buffers as empty, not
necessarily affecting the contents.
Updated blocks are not written to the
disc. This is also an initialization
proceedure before first use of the
disce.

addrl ¢ ---

ddrl nl 02 n3

The text scanning primitive used by
WORD. PFrom the text address addrl
and an ascii delimiting character ¢,
i8 determined the byte offset to the
first non-delimiter character nl,
the offset to the first delimiter
after the text n2, and the offset

to the first character not included.
This proceedure will not process past
an ascii ‘null’, treating it as an
unconditional delimiter.

P,C2,L0
This is an “alias’ or duplicate
definition for UNTIL.

ENDIF

ERASE

ERROR

EXECUTE

EXPECT

FENCE

FILL

FIRST

addr n —-——— (compile) P,CO,LO
Occurs in a colon-definition in form:

IF ... ENDIF

IF ... ELSE ... ENDIF

At run-time, ENDIF serves only as the
destination of a forward branch from
IF or ELSE. It marks the conclusion
of the conditional structure. THEN
is another name for ENDIF. Both
names are supported in fig-FORTH.
also IF and ELSE.

See

At compile-time, ENDIF computes the
forward branch offset from addr to
HERE and stores it at addr. n is
used for error tests.

addr n ---
Clear a region of memory to zero from
addr over n addresses.

line =--- in blk
Execute error notification and re-
start of system. WARNING is first
examined. I1f 1, the text of line n,
relative to screen 4 of drive 0 is
printed. This line number may be
positive or negative, and beyond just
screen 4. If WARNING=0, n is just
printed as a message number (non disc
installation). If WARNING is -1,
the definition (ABORT) is executed,
which executes the system ABORT. The
user may cautiously modify this
execution by altering (ABORT).
fig-FORTH saves the contents of IN
and BLK to assist in determining the
location of the error. Final action
is execution of QUIT.

addr -~
Execute the definition whose code
field address is on the stack. The
code field address 1is also called
the compilation address.

addr count --- LO
Transfer characters from the terminal
to address, until a8 "return" or the

count of characters have been rec-
eived. One or more nulls are added
at the end of the text.

addr U
A user variable containing an

address below which FORGETting is
trapped. To forget below this point
the user must alter the contents of
FENCE.

addr quan b ---
Fill memory at the address with the
specified quantity of bytes b.

~~= 0
A constant that leaves the address
of the first (lowest) block buffer.

/3

FLD

FORGET

FORTH

HERE

HEX

HLD

HOLD

ID.

FORTH

--~ addr U

A user variable for control of pumber
output field width. Presently un=-

used in fig~FORTH.

E,LO

Executed in the form:
FORGET cccc

Deletes definition named cccc from
the dictionary with all entries
physically following it. 1In fig-
FORTH, an error message will occur 1if
the CURRENT and CONTEXT vocabularies
are not currently the same.

P,L1
The name of the primary vocabularye.
Execution makes FORTH the CONTEXT
vocabulary. Until additional user
vocabularies are defined, new user
definitions become a part of FORTH.
FORTH is immediate, so it will exec-
ute during the creation of a colon-

definition, to select this vocabulary
at compile time.

—-—~ addr LO
Leave the address of the next avail-
able dictionary locatiocon.

LO
Set the numeric conversion base to
sixteen (hexadecimal).
~-~= addr ’ LO

A user variable that holds the addr-
ess of the latest character of text
during numeric output conversion.

e == LO
Used between <# and #> to insert

an ascii character into a pictured
numeric output string.

e.g. 2E HOLD will place a
decimal point.

- n Cc,LO
Used within & DO-LOOP to copy the
loop index to the stack. Other

use is implementation dependent.

See R.

addr --=-

Print a definition’s name from {its
name field address.

INTEREST GROUP ----- P.O.

IF

£ —--= (run-time)
-==~ addr n (compile) P,C2,L0
Occurs 18 & colon-definition in form:
IF (tp) ... ENKDIF
IF (tp) e+« ELSE (fp) ... ENDIF {
At run-time, IF selects execution
based on a boolean flag. If f is -
true (non-zero), execution continues
ahead thru the true part. If £ is
false (zero), execution skips till
Just after ELSE to execute the false
part. After either part, execution
resumes after ENDIF. ELSE and 1its
falee part are optional.; if missing,
false execution skips to just after
ENDIF.

At compilertime IF compiles OBRANCH
and reserves space for an offset

at addr. addr and n are used later
for resolution of the offset and

error testinge.

IMMEDIATE

IR

INDEX

Mark the most resently made definit-
ion Bo that when encountered at
compile time, it will be executed
rather than being compiled. 1.e. the
precedence bit ian 1ts header is set.
This method allows definitions to
handle unusual compiling situations,
rather than build them into the
fundamental compiler. The user may
force compiletion of an immediate
definition by preceeding it with
[COMPILE].

--= addr Lo —
A user variable containing the byte
offset within the current input text
buffer (terminal or disc) from which
the next text will be accepted. WORD
uses and moves the value of IR.

from to --- .
Print the first line of each screen
over the range from, to. This ie
used to view the comment lines of an
aree of text on disc screens.

INTERPRET

The outer text interpreter which
sequentielly executes or compiles
text from the input stream (terminal
or disc) depending omn STATE. If the
word name cannot be found after

a4 search of CORTEXT and them CURRERNT
it is converted to a number according
to the current base. That also fail-
ing, an error message echoing the
name with a " 7" will be given.

Text input will be teken according to
the convention for WORD. If a decimal
point is found as part of a number,

a double number vague will be left.
The decimal point has no other pur-

pose than to force this action.
See NUMBER.

Box 1105 ----- San Carlos, Ca. 94070 /¥

KEY

LATEST

LEAVE

LFA

LIMIT

LIST

LITERAL

LOAD

--= ¢ LO LOOP
Leave the ascii value of the next

terminal key struck.

addr
Leave the name field address of the
topmost word in the CURRENT vocabul-

ary.

c,LO
Force termination of a DO-LOOP at the
next opportunity by setting the loop
limit equal to the current value of
the index. The index itself remains
unchanged, and execution prodeeds
normally until LOOP or +LOOP is
encountered.
Mk
pfa --- ‘1fa
Convert the parameter field address
of a dictionary definition to its
link field address.
M/

---=- 0
A constant leaving the address just
above the highest memory available
for 8 disc buffer. Usually this is
the highest system memory.

n --- L0 M/MOD
Display the ascii text of screem n

on the selected output device. SCR

contains the screen number during and

after this process.

-== mn c2,L0
Within a colon~definition, LIT is
automatically compiled before each
16 bit literal number encountered in
input text. Later execution of LIT
causes the contents of the next
dictionary address to be pushed to
the stack.

MAX

MESSAGE

(compiling) P,C2,L0
If compiling, then compile the stack
value n as a 16 bit literal. This
definition is immediate so0 that it
will execute during a colon defin-
ition. The intended use is:

T xxx [calculate }] LITERAL ;
Compilation is suspended for the
compile time calculation of a value.
Compilation is reusumed and LITERAL
compiles this value.

n ——

MIN

MINUS

n --- Lo
Begin interpretation of screen n.
Loading will terminate at the end of
the screen or at ;S. See ;S and -->.

MOD

MON

addr n (compiling) P,C2,L0

Occurs in a colon-definition in form:
DO ... LOOP

At run-time, LOOP selectively cont-
role branching back to the correspon-
ding DO based on the loop index and
limit. The loop index 18 incremented
by one and compared to the limit. The
branch back to DO occurs until the
index equals or exceeds the limit;

at that time, the parameters are
discarded and execution continues
ahead.

At compile-~time, LOOP compiles (LOOP)
and uses addr to calculate an offset
to DO. n is used for error testing.

nl n2 --- d
A mixed magnitude math operation
which leaves the double number signed
product of two signed number.

‘'d nl =--- n2 n3
A mixed magnitude math operator which
leaves the signed remainder n2 and
signed quotient n3, from a double
number dividend and divisor nl. The
remainder takes its sign from the
dividend.

udl u2 --- u3 ud4
An unsigned mixed magnitude math
operation which leaves a double
quotient udé4 and remainder u3, from
a double dividend udl and single
divisor u2.

nl n2 --- 9 max LO
Leave the greater of two numbers.

n —--
Print on the selected output device
the text of line n relative to screen
4 of drive 0. n may be positive or
negative. MESSAGE may be used to
print incidental text such as report
headers. If WARNING is zero, the
message will simply be printed as

a number (disc un-avsilable).

nl n2 min LO
Leave the smaller of two numbers.

nl ~--- n2 Lo
Leave the two’s complement of a
number.

nl n2 mod LO
Leave the remainder of nl/n2, with
the same sign as nl.

Exit to the system monitor, leaving
a re-entry to Forth, if possible.

FORTH INTEREST GROUP ----- PO. Box 1105 ----- San Carlos, Ca. 94070

MOVE addrl addr2 n ---

Move the contents of n memory cells
(16 bit contents) beginning at addrl
into n cells beginning at addr2.

The contents of addrl is moved first.
This definition is appropriate omn

on word addressing computers.

NEXT
This is the inner interpreter that
uses the interpretive pointer IP to
execute compiled Forth definitions.
It is not directly executed but 1is
the return point for all code pro-
ceedures. It acts by fetching the
address pointed by IP, storing this
value in register W. It then jumps
to the address pointed to by the
address pointed to by W. W points to
the code field of a definition which
contains the address of the code
which executes for that definition.
This usage of indirect threaded code
is a major contributor to the power,
portability, and extensibility of
Forth. Locations of IP and W are
computer specifice.

NFA pfa --- nfa
Convert the parameter field address
of a definition to its name field.

NUMBER addr -~--- d

Convert a character string left at
addr with a preceeding count, to

a signed double number, ueing the
current numeric base. If a decimal
point i8 encountered in the text, its
position will be given in DPL, but

no other effect occurs. If numeric
conversion is not possible, an error
message will be given.

OFFSET --=~ addr . U
A user variable which may contain
a block offset to disc drives. The
contents of OFFSET 1is added to the
stack number by BLOCK. Messages
by MESSAGE are independent of OFFSET.
See BLOCK, DRO, DRl, MESSAGE.

OR nl n2 -- or LO
Leave the bit-wise loglical or of two
16 bit values. i

ouT ~-= addr U
A user variable that contains a value

incremented by EMIT. The user may
alter and examine OUT to control
display formating.

OVER nl n2 --- nl n2 nl LO

Copy the second stsck value, placing
it as the new top.

PAD

PFA

POP

PREV

PUSH

PUT

QUERY

QUIT

Rf

-—= addr LO
Leave the address of the text output
buffer, which is a fixed offset above P
HERE. {

nfa ~--- pfa
Convert the name field address of
a compiled definition to 1ts para-
meter field address.

The code sequence to remove a stack
value and return to NEXT. POP is
not directly executable, but is a
Forth re-entry point after machine
code. :

--==- _addr
A variable containing the address of
the disc buffer most recently ref- i
erenced. The UPDATE command marks J
this buffer to be later written to :
disc. :

Thie code sequence pushes machine
registers to the computation stack |
and returns to NEXT. It is not
directly executable, but is a Forth
re~entry point after machine code.

This code sequence stores wmachine
register contents over the topmost
computation stack value and returnas
to KEXT. It is not directly exec-
utable, but 18 a Forth re~-entry point
after machine code.

Input 80 characters of text (or until
a "return") from the operators
terminal. Text is positioned at the
address contsined in TIB with IN

set to zero.

L1
Clear the return stack, stop compil-
ation, and return control to the
operators terminal. Ko message
is given.

-== n
Copy the top of the return stack to
the computation stack.

-== addr U
A user variable which may contain
the location of an editing cursor,
or other file related function.

FORTH INTEREST GROUP ----- PO. Box 1105 ----+ San Carlos, Ca. 94070 /b

(™

N

R>

RO

REPEAT

ROT

S0

SCR

SIGN

FORTH

addr blk f ~---
The fig-FORTH standard disc read-
write linkage. addr specifies the
source or destination block buffer,
blk 1is the sequential number of
the referenced block; and f is a
flag for f=0 write and f=1 read.
R/W determines the location on mass
storage, performs the read-write and
performs any error checking.

——— n L0
Remove the top value from the return
stack and leave it on the computation
stack. See >R and R.

—-=-= addr i)
A user variable containing the
initial location of the return stack.
Pronounced R-zero. See RP!

addr n ---~ (compiling) P,C2
Used within a colon-definition in the
form:

BEGIN cse WHILE ces REPEAT
At run-time, REPEAT forces an
unconditional branch back to just
after the correspoinding BEGIN.

At compile-time, REPEAT compiles
BRANCH and the offset from HERE to
addr. n 1is used for error testing.

nl n2 n3 --- n2 a3 nl LO
Rotate the top three values on the
stack, bringing the third to the top.

A computer dependent proceedure to
initialize the return stack pointer
from user variable RO.

n --- d
Sign extend a single number to form
a double number.

-—-- addr U
A user variable that contains the
initial value for the stack pointer.
Pronounced S-zero. See SP!

—-——- addr u
A user variable containing the screen
number most recently reference by
LIST.

n 4 --- d LO
Stores an ascii "-" sign just before
a converted numeric output string
in the text output buffer when n 1is
negative. n is discarded, but double
number d is maintained. Must be

used between <# and #>.

INTEREST GROUP

«=++ P0O. Box

SMUDGE

SP!

SP@

SPACE

SPACES

STATE

SWAP

TASK

THEN

TIB

TOGGLE

TRAVERSE

Used during word definition to toggle
the "smudge bit" in a definitions”’
name field. This prevents an un-
completed definition from being found
during dictionary searches, until
compiling i8 completed without error.

A computer dependent procéedure to
initialize the stack pointer from
S0.

-=-- addr
A computer dependent proceedure to
return the address of the stack
position to the top of the stack,
as it was before SP@ was executed.
(e.g. 1 2 SP@ @ . . . would
type 2 2 1)

LO

Transmit an ascii blank to the output
device.

n ——-— LO
Transmit n ascii blanks to the output
device.

--- addr LO,U
A user variable containg the compil-
ation state. A non-zero value
indicates compilation. The value
itself may be implementation depend-
ent.

nl n2 =--- n2 nl LO
Exchange the top two values on the
stacke. .

A no-operation word which can mark
the boundary between applications.
By forgetting TASK and re-compiling,
an application can be discarded in
its entirety.

P,CO,LO
An alias for ENDIF.

-=-=- addr U
A user variable containing the addr-
ess of the terminal input buffer.

addr b ---
Complement the contents of addr by
the bit pattern b.

addrl n --- addr2
Move across the name field of a
fig-FORTH variable length name field.
addrl 1s the address of either the
length byte or the last letter.
If n=1, the motion is toward hi mem-
ory; 1if n=-1, the motion is toward
low memory. The addr2 resulting 1is
address of the other end of the name,

1105 ----- San Carlos, Ca. 94070

TRIAD
|
TYPE
|

u/

UNTIL

’ UPDATE

USE

USER

scr —---
Display on the selected output device
the three screens which include that

numbered scr, begining with a screen

evenly divisible by three. Output

is suitable for source text records,

and includes a reference line at the

bottom taken from line 15 of screené.

addr count -—--— LO
Transmit count characters from addr

to the selected output device.

ul w2 --- ud
Leave the unsigned double number
product of two unsigned numbers.

ud ul ~--= w2 u3
Leave the unsigned remainder u2 and
unsigned quotient u3 from the unsign-
ed double dividend ud and unsigned
divisor ul.

f —--- (run-time)

addr n =-- (compile) P,C2,L0
Occurs within a colon-definition in
the form:

BEGIN ... UNTIL
At run-time, UNTIL controls the cond-
itional branch back to the corres-
ponding BEGIN. If £ is false, exec-
ution returns to just after BEGIN;
1f true, execution continues ahead.

At compile-time, UNTIL compiles
(OBRANCH) and an offset from HERE
to addr. n is used for error tests.

LO
Marks the most recently referenced
block (pointed to by PREV) as

altered. The block will subsequently
be transferred automatically to disc

should 1ts buffer be required for
storage of a different block.

addr

A variable containing the address of
the block buffer to use next, as the
least recently written.

n --- LO
A defining word used in the form:

n USER ccce
which creates a user variable cccce.
The parameter field of cccc contains
n as a fixed offset relative to
the user pointer register UP for
this user variable. When cccc 1is
later executed, it places the sum of
its offset and the user area base
address on the stack as the storage
address of that particular variable.

VARIABLE

VOC-LINK

VOCABULARY

VLIST

WARNING

WHILE

E,LU

A defining word used in the form:
n VARIABLE cccc

When VARIABLE is executed, it creates
the definition cccc with 1ts para-
meter field initialized to n. When
ccece 18 later executed, the address
of its parameter field (containing n)
i8 left on the stack, so that a fetch
or store may access this location.

addr U
A user variable containing the addr-
ess of a field in the definition of
the most recently created vocabulary.
All vocabulary names are linked by
these fields to allow control for
FORGETting thru multiple vocabularys.

E,L
A defining word used in the form:
VOCABULARY <cccc
to create a vocabulary definition
ccecee. Subsequent use of cccc will
make 1t the CONTEXT vocabulary which
is searched first by INTERPRET. The
sequence '"cccc DEFINITIONS" will
also make cccc the CURRENT vocabulary
into which new definitions are
placed.

cccec will be so chained
all definitions of the
vocabulary in which cccc is itself
defined. All vocabularys ulitmately
chain to Forth. By convention,
vocabulary names are to be declared
IMMEDIATE. See VOC-LINK.

In fig-~FORTH,
as to include

List the names of the definitions in
the context vocabulary. "Break" will
terminate the listing.

addr U
A user variable containing a value
controlling messages. If = 1

disc is present, and screemn 4 of
drive 0 is the base locacion for
messages. If = 0, no disc is present
and messages will be presented by
number. If = -1, execute (ABORT) for
a user specified proceedure. -
See MESSAGE, ERROR.

f - (run-time)
adl nl adl nl ad2 n2 P,C2

Occurs in a colon-definition in the
form:

BEGIN WHILE (tp) REPEAT
At run-time, WHILE selects condition-
al execution based on boolean flag f.
If £ is8 true (non-zero), WHILE cont-
intues execution of the true part
thru to REPEAT, which then branches
back to BEGIN. If £ is false (zero),
execution skips to just after REPEAT,
exiting the structure.

e Ly

At compile time, WHILE emplaces
(0OBRANCH) and leaves ad2 of the

erved offset. The stack values
be resolved by REPEAT.

res-
will

FORTH INTEREST GROUP ----- PO. Box 1105 ----- San Carlos, Ca. 94070

/¥

/
A

WIDTH

WORD

XOR

fCOMPILE)

FORTH

—-—-=- addr U
In fig-FORTH, a user variable cont-
aining the maximum number of letters
saved in the compilation of a
definitions’ name. It must be 1 thru

31, with a default value of 31. The
name character count and its natural
characters are saved, up to the
value in WIDTH. The value may be
changed at any time within the above

limitse.

Read the next text characters from
the {nput stream being interpreted,
until a delimiter ¢ is found, storing
the packed character string begining
at the dictionary buffer HERE. WORD
leaves the character count in the
first byte, the characters, and ends
with two or more blanks. Leading
occurances of-c are ignored. If BLK
is zero, text is taken from the
terminal input buffer, otherwise from
the disc block stored in BLK.

See BLK, IN.

This is pseudonym for the "null"
or dictionary entry for a name of

one character of ascii null. It

is the execution proceedure to term-
inate interpretation of a line of
text from the terminal or within

a disc buffer, as both buffers always
have a null at the end.

nl n2 --- xor L1
Leave the bitwise logical exclusive-
or of two values.

P,L1
Used in a colon-definition in form:

@ OXXX [words] more H
Suspend compilation. The words after
[are executed, not compiled. This
allows calculation or compilation
exceptions before resuming compil-
ation with]. See LITERAL, J.

P,C
Used in a colon-definition in form:

: XXX [COMPILE] FORTH 3
[COMPILE] will force the compilation
of an immediate defininition,
that would otherwise execute
during compilation. The above
example will select the FORTH
vocabulary wvhen xxx executes, rather
than at compile time.

L1
Resume compilation, to the completion
of a colon-definition. See [.

INTEREST GROUP ----- PO. Box 1105 ----- San

Carlos, Ca. 94070 /4

CODE LIT (PUSH FOLLOWING LITERAL TO STACK *)
LABEL PUSH .~ (PUSH ACCUM AS HI-BYTE, ML STACK AS LO-BYTE *)
LABEL PUT (REPLACE BOTTOM WITH ACCUM. AND ML STACK *)
LABEL NEXT (EXECUTE NEXT FORTH ADDRESS, MOVING IP *)
HERE °* <CLIT> ! HERE 2+ , (MAKE SILENT WORD *)
LABEL SETUP (MOVE # ITEMS FROM STACK TO ‘N’ AREA OF Z-PAGE *)
CODE EXECUTE (EXECUTE A WORD BY ITS CODE FIELD *)
(ADDRESS ON THE STACK *)
CODE BRANCH (ADJUST IP BY IN-LINE 16 BIT LITERAL %)
CODE DBRANCH (IF BOT IS ZERO, BRANCH FROM LITERAL *)
CODE (LOOP) (INCREMENT LOOP INDEX, LOOP UNTIL => LIMIT *#*)
CODE (+LOOP) (INCREMENT INDEX BY STACK VALUE +/- *)
CODE (DO) (MOVE TWO STACK ITEMS TO RETURN STACK *)
CODE I (COPY CURRENT LOOP INDEX TO STACK *)
CODE DICIT (CONVERT ASCII CHAR-SECOND, WITH BASE-BOTTOM *)
' " (IF OK RETURN DIGIT-SECOND, TRUE-BOTTOM; *)
(OTHERWISE FALSE-BOTTOM. *)_
COD¥E (FIND) (HERE, NFA ... PFA, LEN BYTE, TRUE; ELSE FALSE ¥*)
CUDE ENCLOSE (ENTER WITH ADDRESS-2, DELIM-1. RETURN WITH *)
(ADDR-4, AND OFFSET TO FIRST CH-3, END WORD-2, NEXT CH-1 *)_
CODE EMIT (PRINT ASCII VALUE ON BOTTOM OF STACK *)
CODE KEY (ACCEPT ONE TERMINAL CHARACTER TO THE STACK *)
CODE ?TFRMINAL (“BREAK’ LEAVES 1 ON STACK; OTHERWISE 0 *)
CODE CR (EXECUTE CAR. RETURN, LINE FEED ON TERMINAL %)
CODE CMOVE (WITHIN MEMORY; ENTER W/ FROM=-3, TO0-2, QUAN-1 *)
CODE U* (16 BIT MULTIPLICAND-2, 16 BIT MULTIPLIER-1 *)
(32 BIT UNSIGNED PRODUCT: LO WORD-2, HI WORD-1 *)
CODE U/ (31 BIT DIVIDEND-2, -3, 16 BIT DIVISOR-1 %)
(16 BIT REMAINDER-2, 16 BIT QUOTIENT-1 *)
CODE AND (LOGICAL BITWISE AND OF BOTTOM TWO ITEMS *)
CODE OR (LOGICAL BITWISE ‘OR’ OF BOTTOM TWO ITEMS *)
CODE XOR (LOGICAL °EXCLUSIVE-OR‘ OF BOTTOM TWO ITEMS *)
CODE SP@ (FETCH STACK POINTER TO STACK *)
CODE SP! ‘ (LOAD SP FROM “S0° *)
CODE RP! (LOAD RP FROM RO *)
CODE ;S (RESTORE IP REGISTER FROM RETURN STACK *)
CODE LEAVE (FORCE EXIT OF DO-LOOP BY SETTING LIMIT *)
XSAVE STX, TSX, R LDA, R 2+ STA, (TO INDEX *)
CODE >R (MOVE FROM. COMP. STACK TO RETURN STACK *)
CODE R> (MOVE FROM RETURN STACK TO COMP. STACK *)
CODE R (COPY THE BOTTOM OF RETURN STACK TO COMP. STACK #*)
CODE 0= (REVERSE LOGICAL STATE OF BOTTOM OF STACK *)
CODE 0< (LEAVE TRUE IF NEGATIVE; OTHERWISE FALSE *)
CODE + (LEAVE THE SUM OF THE BOTTOM TWO STACK ITEMS
CODE D+ (ADD TWO DOUBLE INTEGERS, LEAVING DOUBLE %)
CODE MINUS (TWOS COMPLEMENT OF BOTTOM SINGLE NUMBER *)
CODE DMINUS (TWOS COMPLEMENT OF BOTTOM DOUBLE NUMBER *)
CODE OVER (DUPLICATE SECOND ITEM AS NEW BOTTOM *)
CODE DROP (DROP BOTTOM STACK ITEM *)
CODE SWAP (EXCHANGE BOTTOM AND SECOND ITEMS ON STACK *)
CODE DUP (DUPLICATE BOTTOM ITEM ON STACK %)
CODE +! (.ADD SECOND TO MEMORY 16 BITS ADDRESSED BY BOTTOM %)
CODE TOGGLE (BYTE AT ADDRESS-2, BIT PATTERN-1 ... *)
CODE @ (REPLACE STACK ADDRESS WITH 16 BIT %)
BOT X) LDA, PHA, (CONTENTS OF THAT ADDRESS *)
CODE c@ (REPLACE STACK ADDRESS WITH POINTED 8 BIT BYTE *#)
CODE ! (STORE SECOND AT 16 BITS ADDRESSED BY BOTTOM *)
FORTH INTEREST GROUP MAY 1, 1979

RN = R et bt bt \O SN B b LD PO = WO N 00 ket N = O B 00O

13
13
13
13
14
14
14
0 14
15
15
16
16
17
17
18
18
18
19
20
20
21
21

21

22
23
23
24
24
25
25
10 25
1 26
5 26
8 26
12 26
1 27
2 27
5 27
8 27
11 27
2 28
6 28
1 29
4 29
9 29
12 29
1 30
4 30
7 30
11 30

31
32
32
32
32

[o NV, BN SRR RN

o/

(___*‘__*'__ﬁ

CODE C! (STORE SECOND AT BYTE ADDRESSED BY BOTTOM *) 12 32
- (CREATE NEW COLON-DEFINITION UNTIL “;° *)_ 2 33
; (TERMINATE COLON-DEFINITION *) 9 33 (

® b
: CONSTANT (WORD WHICH LATER CREATES CONSTANTS *)_ 1 34
: VARIABLE (WORD WHICH LATER CREATES VARIABLES *) 5 34
| : USER : (CREATE USER VARIABLE *)_ 10 34
| 20 CONSTANT BL CR (ASCII BLANK *)_ 4 35
40° CONSTANT C/L : (TEXT CHARACTERS PER LINE *)_ 5 35
3BEO CONSTANT FIRST (FIRST BYTE RESERVED FOR BUFFERS *)_ 7 35
4000 CONSTANT LIMIT (JUST BEYOND TOP OF RAM *)_ 8 35
80 CONSTANT B/BUF (BYTES PER DISC BUFFER *)_ 9 35
8 CONSTANT B/SCR (BLOCKS PER SCREEN = 1024 B/BUF / *) 10 35
: +ORIGIN LITERAL + ; (LEAVES ADDRESS RELATIVE TO ORIGIN *) 13 35
HEX (0 THRU 5 RESERVED, REFERENCED TO $00A0 *)_ 1 36
(06 USER SO) _ (TOP OF EMPTY COMPUTATION STACK *)_ 2 36
(08 USER RO) (TOP OF EMPTY RETURN STACK *)_ 3 36
OA USER TIB (TERMINAL INPUT BUFFER *)_ 4 36
0C USER WIDTH (MAXIMUM NAME FIELD WIDTH *)_ 5 36
OE USER WARNING (CONTROL WARNING MODES *)_ 6 36
10 USER FENCE . CR (BARRIER FOR FORGETTING #*)_ 7 36
12 USER DP (DICTIONARY POINTER *)_ 8:36
| 14 USER VOC-LINK (TO NEWEST VOCABULARY *) 9 36
| 16 USER BLK (INTERPRETATION BLOCK *)_ 10 36
18 USER 1IN (OFFSET INTO SOURCE TEXT *)_ 11 36
1A USER OUT (DISPLAY CURSOR POSITION *)_ 12 36
1c USER SCR (EDITING SCREEN *) 13 36
1E USER OFFSET (POSSIBLY TO OTHER DRIVES *) 1 37
20 USER CONTEXT (VOCABULARY FIRST SEARCHED *)_ 2 37
; 22 USER CURRENT (SEARCHED SECOND, COMPILED INTO *)_ 3 37
24 USER STATE (COMPILATION STATE *)_ 4 37
' 26 USER BASE CR (FOR NUMERIC INPUT-OUTPUT *)_ 5 37
: 28 USER DPL _ (DECIMAL POINT LOCATION *) 6 37
; 2A USER FLD (OUTPUT FIELD WIDTH *)_ 7 37
’ 2C USER CSP (CHECK STACK POSITION *) 8 37
‘ 2E USER R# (EDITING CURSOR POSITION *) 9 37
30 USER HLD (POINTS TO LAST CHARACTER HELD IN PAD *)_ 10 37
} : 14 1+ (INCREMENT STACK NUMBER BY ONE *)_ 1 38
: 2+ 2+ (INCREMENT STACK NUMBER BY TWO *)_ 2 38
f : HERE DP @ (FETCH NEXT FREE ADDRESS IN DICT. *)_ 3 38
: ALLOT DP +! ; (MOVE DICT. POINTER AHEAD *)_ 4 38.
: o, HERE ! 2 ALLOT ; CR (ENTER STACK NUMBER TO DICT. *)_ 5 38
: C, HERE C! 1 ALLOT ;. (ENTER STACK BYTE TO DICT. *)_ 6 38
: - MINUS + (LEAVE DIFF. SEC - BOTTOM *)_ 7 38
: o= - 0= (LEAVE BOOLEAN OF EQUALITY *)_ 8 38
: < - 0< (LEAVE BOOLEAN OF SEC < BOT *)_ 9 38
: > SWAP < ; (LEAVE BOOLEAN OF SEC > BOT *)_ 10 38
ROT >R SWAP R> SWAP (ROTATE THIRD TO BOTTOM *)_ 11 38
SPACE BL EMIT ; CR (PRINT BLANK ON TERMINAL *) 12 38
: -DUP DUP- IF DUP ENDIF ; (DUPLICATE NON-ZERO *)_ 13 38
: TRAVERSE (MOVE ACROSS NAME FIELD *)_ 1 39
(ADDRESS-2, DIRECTION-1, I.E. -1=R TO L, +1=L TO R *)_ 2 39
: LATEST CURRENT @ @ ; (NFA OF LATEST WORD *)_ 6 39
: LFA & - (CONVERT A WORDS PFA TO LFA *)_ 11 39
: CFA 2 - CR (CONVERT A WORDS PFA TO CFA *)_ 12 39
: NFA 5 - -1 TRAVERSE ; (CONVERT A WORDS PFA TO NFA *)_ 13 39
: PFA 1 TRAVERSE 5 + ; (CONVERT A WORDS NFA TO PFA *)_ 14 39 -
: !CSP SP@ CSP ! ; (SAVE STACK POSITION IN °CSP° *) 1 40

FORTH INTEREST GROUP MAY 1, 1979 Q2

?ERROR (BOOLEAN-2, ERROR TYPE-1], WARN FOR TRUE *)
?7COMP STATE @ O= 11 ?ERROR ; (ERROR IF NOT COMPILING *)
: 7EXEC STATE @ 12 ?ERROR ; (ERROR IF NOT EXECUTING #*)
: ?PAIRS - 13 ?ERROR (VERIFY STACK VALUES ARE PAIRED *)
: ?CSP SP@ CSP @ - 14 ?ERROR 3 (VERIFY STACK POSITION *)
: ,7LOADING (VERIFY LOADING FROM DISC *):
: COMPILE (COMPILE THE EXECUTION ADDRESS FOLLOWING *) -
| 0 STATE ! 3 IMMEDIATE (STOP COMPILATION #*)
] CO STATE ! H (ENTER COMPILATION STATE *):
SMUDGE LATEST 20 TOGGLE 5 (ALTER LATEST WORD NAME *)
HEX 10 BASE ! 5 (MAKE HEX THE IN-OUT BASE *)
DECIMAL O0A BASE ! 5 (MAKE DECIMAL THE IN-OUT BASE *)
(;CODE) (WRITE CODE FIELD POINTING TO CALLING ADDRESS *)_
;CODE (TERMINATE A NEW DEFINING WORD *)
<BUILDS 0 CONSTANT (CREATE HEADER FOR “DOES>‘ WORD #*)
DOES> (REWRITE PFA WITH CALLING HI-LEVEL ADDRESS *)_
(REWRITE CFA WITH “DOES>" CODE *)_
COUNT DUP 1+ SWAP C@ 5 (LEAVE TEXT ADDR. CHAR. COUNT #*)__
TYPE (TYPE STRING FROM ADDRESS~2, CHAR.COUNT-1 *)
~-TRAILING (ADJUST CHAR. COUNT TO DROP TRAILING BLANKS *)
(. (TYPE IN-LINE STRING, ADJUSTING RETURN *)
M 22 STATE @ (COMPILE OR PRINT QUOTED STRING *)_
EXPECT (TERMINAL INPUT MEMORY-2, CHAR LIMIT-1 *)
X BLK @ (END-OF-TEXT IS NULL *)
FILL (FILL MEMORY BEGIN-3, QUAN-2, BYTE-1 *)
ERASE (FILL MEMORY WITH ZEROS BEGIN-2, QUAN-1 *)
BLANKS (FILL WITH BLANKS BEGIN-2, QUAN-1 *)
HOLD (HOLD CHARACTER IN PAD *)
: PAD HERE 44 + (PAD IS 68 BYTES ABOVE HERE #*)
(DOWNWARD HAS NUMERIC OUTPUTS; UPWARD MAY HOLD TEXT *)__
: WORD (ENTER WITH DELIMITER, MOVE STRING TO “HERE® *)
: (NUMBER) (CONVERT DOUBLE NUMBER, LEAVING UNCONV. ADDR. *)_
: NUMBER (ENTER W/ STRING ADDR. LEAVE DOUBLE NUMBER *)
: -FIND (RETURN PFA-3, LEN BYTE-2, TRUE-1; ELSE FALSE *)_
: (ABORT) GAP (ABORT) 5 (USER ALTERABLE ERROR ABORT *)_
: ERROR (WARNING: -1=ABORT, 0=NO DISC, 1=DISC *)
WARNING @ O0< (PRINT TEXT LINE REL TO SCR #4 *)
: ID. (PRINT NAME FIELD FROM ITS HEADER ADDRESS *)
: CREATE (A SMUDGED CODE HEADER TO PARAM FIELD *)
(WARNING IF DUPLICATING A CURRENT NAME *)
: [COMPILE] (FORCE COMPILATION OF AN IMMEDIATE WORD *)
: LITERAL (IF COMPILING, CREATE LITERAL *)_
: DLITERAL (IF COMPILING, CREATE DOUBLE LITERAL *)
¢ 7STACK (QUESTION UPON OVER OR UNDERFLOW OF STACK *)_
: INTERPRET (INTERPRET OR COMPILE SOURCE TEXT INPUT WORDS *)
: IMMEDIATE (TOGGLE PREC. BIT OF LATEST CURRENT WORD *)
¢ VOCABULARY (CREATE VOCABR WITH “V-HEAD” AT VOC INTERSECT. *)_
VOCABULARY FORTH IMMEDIATE (THE TRUNK VOCABULARY *)
: DEFINITIONS (SET THE CONTEXT ALSO AS CURRENT VOCAB *)
N ¢ (SKIP INPUT TEXT UNTIL RIGHT PARENTHESIS *)_
QUIT (RESTART, INTERPRET FROM TERMINAL *)
: ABORT (WARM RESTART, INCLUDING REGISTERS *)
CODE COLD (COLD START, INITIALIZING USER AREA *)
CODE S->D (EXTEND SINGLE INTEGER TO DOUBLE *)
¢ +- O0< IF MINUS ENDIF ; (APPLY SIGN TO NUMBER BENEATH *)
¢ D+- (APPLY SIGN TO DOUBLE NUMBER BENEATH *)
: ABS DUP +- 5 (LEAVE ABSOLUTE VALUE *)__
FORTH INTEREST GROUP MAY 1, 1979

3 40
6 40
8 40
10 40
12 40
14 40
2 41
5 41
7 41
9 41
11 41
13 41
2 42
42
43
43
43
44
44
44
44

oIRGB CENSTIN Y, TN~ O Be)

—
N
S
B

2 45
11 45
1 46
4 46
7 46
10 46
13 46
14 46
1 47
1 48
6 48
12 48
49
49
49
49
50
50
51
51
51
13 51
2 52
1 53
4 53
9 53
11 53
14 53

O NN WNW WL &~AN

54
55
56
56
56
56

O ON I

23

DABS DUP D+- 5 (DOUBLE INTEGER ABSOLUTE VALUE *)_ 10 56

: MIN (LEAVE SMALLER OF TWO NUMBERS *)_ 12 56
: MAX (LEAVE LARGET OF TWO NUMBERS *)_ 14 56
s M* (LEAVE SIGNED DOUBLE PRODUCT OF TWO SINGLE NUMBERS *) 1 57
: M/ (FROM SIGNED DOUBLE-3-2, SIGNED DIVISOR-1 *) 3 57
(LEAVE SIGNED REMAINDER-2, SIGNED QUOTIENT-1 *) 4 57
: ok U* DROP (SIGNED PRODUCT *) 7 57
: /MOD >R S=->D R> M/ ; (LEAVE REM-2, QUOT-1 *) 8 57
s / /MOD SWAP DROP (LEAVE QUOTIENT *)_ 9 57
: MOD /MOD DROP CR (LEAVE REMAINDER *)_ 10 57
* /MOD (TAKE RATION OF THREE NUMBERS, LEAVING *)_ 11 57
>R M*x R> M/ (REM-2, QUOTIENT-1 *)_ 12 57
: %/ */MOD SWAP DROP (LEAVE RATIO OF THREE NUMBS *)_ 13 57
: M/MOD (DOUBLE, SINGLE DIVISOR ... REMAINDER, DOUBLE *)_ 14 57
FIRST VARIABLE USE (NEXT BUFFER TO USE, STALEST *) 1 58
FIRST VARIABLE PREV (MOST RECENTLY REFERENCED BUFFER *)_ 2 58
: +BUF (ADVANCE ADDRESS-1 TO NEXT BUFFER. RETURNS FALSE *) 4 58
84 (I.E. B/BUF+4) + DUP LIMIT = (IF AT PREV *)_ 5 58
: UPDATE (MARK THE BUFFER POINTED TO BY PREV AS ALTERED *)_ 8 58
: EMPTY-BUFFERS (CLEAR BLOCK BUFFERS; DON’T WRITE TO DISC *)_ 11 58
: DRO 0 OFFSET | (SELECT DRIVE #0 *)_ 14 58
: DRI 07D0 OFFSET | -=> (SELECT DRIVE #1 *)_ 15 58
: BUFFER (CONVERT BLOCK# TO STORAGE ADDRESS #*) 1 59
: BLOCK (CONVERT BLOCK NUMBER TO ITS BUFFER ADDRESS *)_ 1 60
: (LINE) (LINE#, SCR#, ... BUFFER ADDRESS, 64 COUNT *)_ 2 61
: ~.LINE (LINE#, SCR#, ... PRINTED *)_ 6 61
: MESSAGE (PRINT LINE RELATIVE TO SCREEN #4 OF DRIVE 0 *)_ 9 61
: LOAD (INTERPRET SCREENS FROM DISC *) 2 62
: —-=> (CONTINUE INTERPRETATION ON NEXT SCREEN *) 6 62
6900 CONSTANT DATA (CONTROLLER PORT *)_ 1 65
6901 CONSTANT STATUS (CONTROLLER PORT *)_ 2 65
: #HL (CONVERT DECIMAL DIGIT FOR DISC CONTROLLER *)_ 5 65
CODE D/CHAR (TEST CHAR-1. EXIT TEST BOOL-2, NEW CHAR-1 *)_ 1 66
: ?DISC (UPON NAK SHOW ERR MSG, QUIT. ABSORBS TILL *)_ 7 66
1 D/CHAR >R O= (EOT, EXCEPT FOR SOH *)_ 8 66
CODE BLOCK-WRITE (SEND TO DISC FROM ADDRESS-2, COUNT-1 *)_ 1 67
2 # LDA, SETUP JSR, (WITH EOT AT END *)_ 2 67
CODE BLOCK-READ (BUF.ADDR-1. EXIT AT 128 CHAR OR CONTROL *) 2 68
(C =1 TO READ, O TO WRITE *)_ 3 69
: R/W - (READ/WRITE DISC BLOCK *)_ 4 69
(BUFFER ADDRESS-3, BLOCK #-2, 1=READ O=WRITE *) 5 69
: 7 (FIND NEXT WORDS PFA; COMPILE IT, IF COMPILING *)_ 2 72
: FORGET (FOLLOWING WORD FROM CURRENT VOCABULARY *)_ 6 72
: \ (SKIP INTERPRETATION OF THE REMAINDER OF LINE *)_ 11 72
: BACK HERE - , ; (RESOLVE BACKWARD BRANCH *)_ 1 73
: D.R (DOUBLE INTEGER OUTPUT, RIGHT ALIGNED IN FIELD *)_ 1 76
. D. 0 D.R SPACE ; (DOUBLE INTEGER OUTPUT *)_ 5 76
: .R >R S->D R> D.R ; (ALIGNED SINGLE INTEGER *)_ 7 76
: . S->D D. ; (SINGLE INTEGER OUTPUT *)_ 9 76
: 7 e . " (PRINT CONTENTS OF MEMORY *)_ 11 76
: LIST (LIST SCREEN BY NUMBER ON STACK *)_ 2 77
: INDEX (PRINT FIRST LINE OF EACH SCREEN FROM-2, TO-1 *)_ 7 77
: TRIAD (PRINT 3 SCREENS ON PAGE, CONTAINING # ON STACK *)_ 12 77
: VLIST (LIST CONTEXT VOCABULARY *)_ 2 78
CREATE MON (CALL MONITOR, SAVING RE-ENTRY TO FORTH *)_ 3 79 OK

24

FORTH MODEL IMPLEMENTATION

This model is presented for the serious student as
both an example of a large FORTH program and as a complete
nucleus of FORTH, That is, it is sufficient to run and
to continue to compile itself,

When compiled, the model requires about 2800 bytes of
memory. An expanded version with formatted output and
compiling aids would require about 4000 bytes, A 'full!
implementation usually requires 6000 to 7000 bytes
(including editor, assembler, and disk interface).

The fdllowing information consists of word definitions
you will find in the CODE definitions. These are dependent
on the micro-computer used, these being for the MOS Technology

5602,

Note that the notation in the CODE definitions is
'reverse Polish' as is all of FORTH. This means that the
operand comes before the operator. Each equivalent of a
'line' of assembly code has a symbolic operand, then
any address mode modifier, and finally the op-code mnemonic,
(Note that words that generate actual machine code end in

a'y,"; i.e. LDA,). Therefor:
BOT 1+ 1LDA, in FORTH would be:
LDA 1,X in usual assembler,
And also:
POINTER)Y STA, in FORTH would be:
STA (POINTER),Y in usual assembler,

It takes a bit of getting used to, but reverse Polish
assembler allows full use of FORTH in evaluation of .
expressions and the easy generation of the equivalent of macros.

GLOSSARY OF FORTH MODEL

IP address of the Interpretive Pointer in zero-page.
W address of the code field pointer in zero-page,
N address of an 8 byte scratch area in Zero-page,

XSAVE address of a temporary register for X in zero-page,

UP address of the User Pointer in zero-page.

25

GLOSSARY OF FORTH MODEL, cont.,

A specify accumulator address mode,

specify immediate mode for machine byte literals,

»X ,Y specify memory indexed address mode,

X))Y specify indirect memory reference by a zero-page register.

BOT address of loy byte of a 16-bit stack item with
» X add;ess mode., X register locates computation
stack in zero-page, relative to address $0000,

BOT 1+ address of thehigh byte of the bottom stack item
with ,X mode preset. ’

SEC and SEC 1+ a&address the second stack item as for BOT.

TSX, move the return stack pointer (which is located in
the CPU machine stack in page-one) to X register,

R address of low byte of return stack with ,X mode preset,

Rn + address of the n-th byte of the return stack with ,X
mode preset., Note that the low byte is at low
memory, so 1+ gets the high byte, and 3 + gets
the high byte of the second item of return stack.

PUT address of routine to replace the present computation
stack high byte from accumulator, and put from
the machine stack one byte which replaces the
present low stack byte; continue on to NEXT,

PUSH address of routine to repeat PUT but creating a new
bottom item on the computation stack,

PUSHOA PUTOA address of routine to place the accumulator
at the low stack byte, with the high byte zero.
PUTOA over-writes, while PUSHOA creates new item,

POP POPTWO address of routiné to remove one or two 16-bit
items from computation stack, °

BINARY address of routine to pop one item and PUT the accumulator
(high) and ML stack (low) over what was second,

SETUP address of a routine to move 16-bit items to zero-page.
Item quantity is in accumulator,

NEXT address of the inner-interpreter, to which all
code routines must return., NEXT fetches
indirectly referred to IP the next compiled
FORTH word address, It then jumps indirectly
to pointed machine code,

o6

wn
(@]
=

—

b b
v W

N = OV ~NOTLULEWN = O

3
kAkIXARKA KR AAR KA R A A AR A ARk fig-—FORTH MODEL RERRRARARARA KRR A RR R KR A A kX

Through the courtesy of

FORTH INTEREST GROUP
P. 0. BOX 1105
SAN CARLOS, CA. 94070

RELEASE 1
WITH COMPILER SECURITY
AND

VARIABLE LENGTH NAMES
Further distribution must include the above notice.

4.

(ERROR MESSAGES)

EMPTY STACK

DICTIONARY FULL

HAS INCORRECT ADDRESS MODE
ISN’T UNIQUE

DISC RANGE ?
FULL STACK
DISC ERROR !

FORTH INTEREST GROUP MAY 1, 1979

5

(ERROR MESSAGES)

COMPILATION ONLY, USE IN DEFINITION
EXECUTION ONLY

CONDITIONALS NOT PAIRED

DEFINITON NOT FINISHED

IN PROTECTED DICTIONARY

USE ONLY WHEN LOADING R

OFF CURRENT EDITING SCREEN

DECLARE VOCABULARY

FORTH INTEREST GROUP MAY 1, 1979

6
(INPUT-OUTPUT,

CODE EMIT

0

1

2

3 CODE KEY

4 BEGIN
5 BEGIN
6

7

8

9

0 X) CMP,
.A LSR,

O=

CODE CR

CODE
BEGIN,
TYA,

DECIMAL

7

(INPUT-OU
CODE HOME
CODE SCROLL

HERE *
FDOC JSR
HERE ° EMI

bt Bt Pt ot ot bt
MWD~ OWVWOO NN UVLEEWN O

XSAVE STX,

END,
7F # CMP,
XSAVE STX,
? TERMINAL -

‘PUSHOA

KEY 2 - !

TIM
XSAVE STX,
72C6 JSR,

BOT 1+ LDA,
XSAVE LDX,
BEGIN, BEGIN,

.A LSR, CS END,
0 X) CMP, O X) CMP,
0 X) CMP, 6E02 LDA, .A LSR,
PLP, CS IF, 80 # ORA, THEN,
731D JSR, FF # EOR, 7F # AND,
0= NOT END, XSAVE LDX,
728A JSR, XSAVE LDX,

JF # AND,
POP JMP,

, 6EO02 LDA,
, 731D JSR,

1 # LDA,
731D JSR, 6E02 BIT,
JMP,

6E02 BIT,
0= END,

;S

TPUT, APPLE
FC58 JSR,
FC70 JSR,

NEXT JMP,
NEXT JMP,

(POINT KEY TO HERE)
PUSHOA JMP,
POINT EMIT TO HERE

, 7F # AND,
T 2 - (

8 # LDX,
7320 JSR,
0 X) CMP,
PHP,
TAY,
O= NOT END,
PUSHOA JMP,

NEXT JMP,

0= NOT IF,
INY,

WFR-780519)

TYA,
DEX,

THEN,

WFR-780730)

BOT 1+ LDA, 80 # ORA, FDED JSR, POP JMP,
HERE * CR 2 - ! (POINT CR TO HERE)
FD8E JSR, NEXT JMP,
HERE “ ?TERMINAL 2 - | (POINT ?TERM TO HERE)
c000 BIT, O<
IF, BEGIN, <C¢Ol10 BIT, €000 BIT, O< NOT END, INY,
THEN, TYA, PUSHOA JMP,
DECIMAL ;S
SCR # 8
0 (INPUT-OUTPUT, SYM-1 WFR-781015)
1 HEX
2 CODE KEY 8A58 JSR, 7F # AND, ©PUSHOA JMP,
3
4 CODE EMIT BOT 1+ LDA, 8A47 JSR, POP JMP,
5
6 CODE CR 834D JSR, NEXT JMP,
7
8 CODE ?TERMINAL (BREAK TEST FOR ANY KEY)
9 8B3C JSR, CS
10 IF, BEGIN, 8B3C JSR, CS NOT END, INY, THEN,
11 TYA, PUSHOA JMP,
12
13
14
15 DECIMAL ;S
FORTH INTEREST GROUP MAY 1, 1979

27

SCR # 15

0 (BRANCH, OBRANCH W/16-BIT OFFSET WFR-79APROI)

1l CODE BRANCH (ADJUST IP BY IN-LINE 16 BIT LITERAL *)

2 cLc, IP)Y LDA, 1IP ADC, PHA,

3 INY, IP)Y LDA, 1IP 1+ ADC, 1IP 1+ STA,

4 PLA, IpP STA, NEXT 2+ JMP,

5 \

6 CODE OBRANCH (IF BOT IS ZERO, BRANCH FROM LITERAL *)

7 INX, INX, FE ,X LDA, FF ,X ORA, .

8 BRANCH O= NOT END, (USE “BRANCH’ FOR FALSE)

9 LABEL BUMP: (TRUE JUST MOVES IP 2 BYTES *)

10 CLC, 1IP LDA, 2 # ADC, 1IP STA,

11 cs IF, 1IP 1+ INC, THEN, NEXT JMP,

12 . :

13 -->

14

15

SCR # 16 '

(LOOP CONTROL . WFR-79MAR20)
CODE (LOOP) (INCREMENT LOOP INDEX, LOOP UNTIL => LIMIT %)

XSAVE STX, TSX, R INC, O= IF, R 14 INC, THEN,
LABEL Ll1: CLC, R 2+ LDA, R SBC, R 3 + LDA, R 1+ SBC,
LABEL L2: XSAVE LDX, (LIMIT-INDEX-1)

.A ASL, ° BRANCH CS END, (BRANCH UNTIL D7 SIGN=1)

PLA, PLA, PLA, PLA, BUMP: JMP, (ELSE EXIT LOOP)

CODE (+LOOP) (INCREMENT INDEX BY STACK VALUE +/- %)
INX, INX, XSAVE STX, (POP INCREMENT)
FF ,X LDA, PHA, PHA, FE ,X LDA, TSX, INX, INX,
CLC, R ADC, R STA, PLA, R 1 + ADC, R 1 + STA,

o
OWONOWLE WN ~0O

[o—
[

12 PLA, Ll: 0< END, (AS FOR POSITIVE INCREMENT)

13 CLC, R LDA, R 2+ SBC, (INDEX-LIMIT-1)

14 ' R 1+ LDA, R 3 + SBC, L2: JMP,

15 --—>

SCR # 17 _

0 ((DO- WFR-79MAR30)
1 .

2 CODE (DO) (MOVE TWO STACK ITEMS TO RETURN STACK #*)
3 SEC 14+ LDA, PHA, SEC LDA, PHA,

4 BOT 1+ LDA, PHA, BOT LDA, PHA,

5 ¢

6 LABEL POPTWO INX, INX,

7 LABEL POP INX, INX, NEXT JMP,

8

9 CODE I . (COPY CURRENT LOOP INDEX TO STACK *)
10 (THIS WILL LATER BE POINTED TO ‘R’)
11

12 -->

13

14

15

FORTH INTEREST GROUP MAY 1, 1979

wn
o
<]

18
(DIGIT WFR-781202)
CODE DIGIT (CONVERT ASCII CHAR-SECOND, WITH BASE-BOTTOM *)
(IF OK RETURN DIGIT-SECOND, TRUE-BOTTOM; *)
' (OTHERWISE FALSE-BOTTOM. *) (
SEC, SEC LDA, 30 # SBC,
0< NOT IF, OA # CMP, (ADJUST FOR ASCII LETTER)
0< NOT IF, SEC, 07 # SBC, OA # CMP,
0< NOT 1IF,
SWAP (AT COMPILE TIME) THEN, BOT CMP, (TO BASE)
0< IF, SEC STA, 1 # LDA,
PHA, TYA, PUT JMP,
(STORE RESULT SECOND AND RETURN TRUE)

[
O WO, W N —~O

(==
—

12 THEN, THEN, THEN, (CONVERSION FAILED)
13 TYA, PHA, INX, INX, PUT JMP, (LEAVE BOOLEAN FALSE)
14 '
15 -=>
|
SCR # 19

(FIND FOR VARIABLE LENGTH NAMES WFR-790225)
CODE (FIND) (HERE, NFA ... PFA, LEN BYTE, TRUE; ELSE FALSE *)
2 # LDA, SETUP JSR, XSAVE STX,
BFEGIN, O # LDY, N)Y LDA, N 2+)Y EOR, 3F # AND, O=
IF, (GOOD) BEGIN, INY, N)Y LDA, N 2+)Y EOR, .A ASL, O=
IF, (STILL GOOD) SWAP CS (LOOP TILL D7 SET)
END, XSAVE LDX, DEX, DEX, DEX, DEX, CLC,
TYA, 5 # ADC, N ADC, SEC STA, O # LDY,
TYA, N 1+ ADC, SEC 1+ STA, BOT 1+ STY,
N)Y LDA, BOT STA, 1 # LDA, PHA, PUSH JMP, (FALSE)
THEN, CS NOT (AT LAST CHAR?) IF, SWAP THEN,
BEGIN, INY, N)Y LDA, O0< END, (TO LAST CHAR)

ot
QWO WN—O

[
[

12 THEN, INY, (TO LINK) N)Y LDA, TAX, INY,

13 N)Y LDA, N 1+ STA, N STX, N ORA, (O LINK ?)

14 0= END, (LOOP FOR ANOTHER NAME)

15 XSAVE LDX, 0 # LDA, PHA, PUSH JMP, (FALSE) -=>
SCR # 20

0 (ENCLOSE WFR-780926)

1 CODE ENCLOSE (ENTER WITH ADDRESS-2, DELIM-1. RETURN WITH *)

2 (ADDR-4, AND OFFSET TO FIRST CH-3, END WORD-2, NEXT CH-1 *)

3 2 # LDA, - SETUP JSR, TXA, SEC, 8 # SBC, TAX,

4 SEC 1+ STY, BOT l+ STY, (CLEAR HI BYTES) DEY, |
5 BEGIN, INY, N 2+)Y LDA, (FETCH CHAR) |
6 N CMP, O= NOT END, (STEP OVER LEADING DELIMITERS) |
7 BOT 4 + STY, (SAVE OFFSET TO FIRST CHAR) |
8 BEGIN, N 2+)Y LDA, O=
9 IF, (NULL) SEC STY, (IN EW) BOT STY, (IN NC)
0 TYA, BOT & + CMP, O=

11 IF, (Y=FC) SEC INC, (BUMP EW) THEN, NEXT JMP,
12 THEN, SEC STY, (IN EW) INY, N CMP, (DELIM 7?7)

13 0= END, (IS DELIM) BOT STY, (IN NC) NEXT JMP,

14 .

15 ==>

.ORTH INTEREST GROUP MAY 1, 1979

SCR # 21

0 (TERMINAL VECTORS WFR~-79MAR30)
1 (THESE WORDS ARE CREATED WITH NO EXECUTION CODE, YET.)
2 (THEIR CODE FIELDS WILL BE FILLED WITH THE ADDRESS OF THEIR)
3 (INSTALLATION SPECIFIC CODE.)
4 b

5 CODE EMIT (PRINT ASCII VALUE ON BOTTOM OF STACK *)
6 :
7 CODE KEY (ACCEPT ONE TERMINAL CHARACTER TO THE STACK *)
8

9 CODE ?TERMINAL ("BREAK’ LEAVES 1 ON STACK; OTHERWISE 0 *)
10

11 CODE CR (EXECUTE CAR. RETURN, LINE FEED ON TERMINAL *)
12

13 ==>

14

15

SCR # 22

0 (CMOVE, WFR-79MAR20)
1 CODE CMOVE (WITHIN MEMORY; ENTER W/ FROM-3, TO-2, QUAN-1 *)
2 3 # LDA, SETUP JSR, (MOVE 3 ITEMS TO ‘N’ AREA)

3 BEGIN, BEGIN, N CPY, 0= (DECREMENT BYTE COUNTER AT ‘N°)
4 IF, N 1+ DEC, 0< (EXIT WHEN DONE)

5 IF, NEXT JMP, THEN, THEN,

6 N 4 +)Y LDA, N 2+)Y STA, INY, 0=

7 END, (LOOP TILL Y WRAPS, 22 CYCLES/BYTE)

8 N 5 + INC, N 3 + INC, (BUMP HI BYTES OF POINTERS)
9 JMP, (BACK TO FIRST “BEGIN")

10

11 -->

12

13

14

15

SCR # 23

0 (U*, UNSIGNED MULTIPLY FOR 16 BITS RS-WFR-80AUG16)

1 CODE U* (16 BIT MULTIPLICAND-2, 16 BIT MULTIPLIER-1 *)

2 (32 BIT UNSIGNED PRODUCT: LO WORD-2, HI WORD-1 *)
3 SEC LDA, N STA, SEC STY,

4 SEC 1+ LDA, N 1+ STA, SEC 1+ STY, (multiplicand to n)

5 10 # LDY,

6 BEGIN, BOT 2+ ASL, BOT 3 + ROL, BOT ROL, BOT 1+ ROL,

7 (double product while sampling D15 of multiplier)
8 cs IF, (set) CLC,

9 (add multiplicand to partial product 32 bits)

10 N LDA, BOT 2 + ADC, BOT 2 + STA,
11 N 1+ LDA, BOT 3 + ADC, BOT 3 + STA,
12 cs IF, BOT INC, O= IF, BOT l+ INC, ENDIF, ENDIF,
13 ENDIF, DEY, O= (corrected for carry bug)
14 UNTIL, NEXT JMP, C;
15 —>
FORTH INTEREST GROUP Aug 23, 1980

X/

SCR # 24 ,
0 (u/, UNSIGNED DIVIDE FOR 31 BITS WFR-79APR29)
1 CODE u/ (31 BIT DIVIDEND-2, -3, 16 BIT DIVISOR-1 *)
2 (16 BIT REMAINDER-2, 16 BIT QUOTIENT-1 *)
3 SEC 2 + LDA, SEC LDY, SEC 2 + STY, «A ASL, SEC STA,
4 SEC 3 + LDA, SEC 1+ LDY, SEC 3 + STY, «A ROL, SEC 1+ STA,
5 10 # LDA, N STA,
6 BEGIN, SEC 2 + ROL, SEC 3 + ROL, SEC,
7 SEC 2 + LDA, BOT SBC, TAY,
8 SEC 3 + LDA, BOT 1+ SBC,
9 CS IF, SEC 2+ STY, SEC 3 + STA, THEN,
10 SEC ROL, SEC 1+ ROL,
11 N DEC, Q0=
12 END, POP JMP,
13 -->
14
15
SCR # 25
0 (LOGICALS WFR-79APR20)
1
2 CODE AND (LOGICAL BITWISE AND OF BOTTOM TWO ITEMS *)
3 BOT LDA, SEC AND, PHA,
4 BOT 1+ LDA, SEC 1+ AND, 1INX, 1INX, PUT JMP,
5
6 CODE OR (LOGICAL BITWISE °“OR’ OF BOTTOM TWO ITEMS *)
7 BOT LDA, SEC ORA, PHA,
8 BOT 1+ LDA, SEC 1 + ORA, INX, 1INX, PUT JMP,
9
10 CODE XOR (LOGICAL “EXCLUSIVE-OR’ OF BOTTOM TWO ITEMS *)
11 BOT LDA, SEC EOR, PHA,
12 BOT 1+ LDA, SEC 1+ EOR, INX, 1INX, PUT JMP,
13
14 -->
15
SCR # 26
0 (STACK INITIALIZATION WFR-79MAR30)
1 CODE spq@ (FETCH STACK POINTER TO STACK *)
2 TXA,
3 LABEL PUSHOA PHA, 0 # LDA, PUSH JMP,
4
5 CODE SP! (LOAD SP FROM “S0° *)
6 06 # LDY, UP)Y LDA, TAX, NEXT JMP,
7
8 CODE RP! (LOAD RP FROM RO *)
9 XSAVE sTX, 08 # LDY, UP)Y LDA, TAX, TXS,
10 XSAVE LDX, NEXT JMP,
11
12 CODE ;S (RESTORE IP REGISTER FROM RETURN STACK . *)
13 PLA, IP STA, PLA, IP 14+ STA, NEXT JMP,
14
15 -=>

FORTH INTEREST

GROUP MAY 1, 1979

2%

SCR # 27

0 (RETURN STACK WORDS WFR-79MAR29)
1 CODE LEAVE (FORCE EXIT OF DO-LOOP BY SETTING LIMIT *)
2 XSAVE STX, TSX, R LDA, R 2+ STA, (TO INDEX *)
3 R 1+ LDA, R 3 + STA, XSAVE LDX, NEXT JMP,
4 ,
5 CODE >R (MOVE FROM COMP. STACK TO RETURN STACK *)
6 BOT 1+ LDA, PHA, BOT LDA, PHA, INX, 1INX, NEXT JMP,
7
8 CODE R> (MOVE FROM RETURN STACK TO COMP. STACK %)
9 DEX, DEX, PLA, BOT STA, PLA, BOT l+ STA, NEXT JMP,
10
11 CODE R (COPY THE BOTTOM OF RETURN STACK TO COMP. STACK *)
12 XSAVE STX, TSX, R LDA, PHA, R 1+ LDA,
13 XSAVE LDX, PUSH JMP,
14 ° R -2 BYTE.IN I !
15 -->
SCR # 28
0 (TESTS AND LOGICALS WFR-79MAR19)
1
2 CODE 0= (REVERSE LOGICAL STATE OF BOTTOM OF STACK *)
3 BOT LDA, BOT 1+ ORA, BOT 1+ STY, _
4 0= IF, INY, THEN, BOT STY, NEXT JMP,
5
6 CODE 0«< (LEAVE TRUE IF NEGATIVE; OTHERWISE FALSE *)
7 BOT 1+ ASL, TYA, .A ROL, BOT 1+ STY, BOT STA, NEXT JMP,
8
9
10 -->
11
12
13
14
15
SCR # 29
0 (MATH WFR-79MAR19)
1 CODE + (LEAVE THE SUM OF THE BOTTOM TWO STACK ITEMS *)
2 CLC, BOT LDA, SEC ADC, SEC STA, BOT 1+ LDA, SEC l+ ADC,
3 SEC 1+ STA, 1INX, INX, NEXT JMP, .
4 CODE D+ (ADD TWO DOUBLE INTEGERS, LEAVING DOUBLE *)
5 CLC, BOT 2 + LDA, BOT 6 + ADC, BOT 6 + STA,
6 BOT 3 + LDA, BOT 7 + ADC, BOT 7 + STA,
7 BOT LDA, BOT 4 + ADC, BOT 4 + STA,
8 , BOT 1 + LDA, BOT 5 + ADC, BOT 5 + STA, POPTWO JMP,
9 CODE MINUS (TWOS COMPLEMENT OF BOTTOM SINGLE NUMBER *)
10 SEC, TYA, BOT SBC, BOT STA, '
11 TYA, BOT 1+ SBC, BOT 1+ STA, NEXT JMP,
12 CODE DMINUS (TWOS COMPLEMENT OF BOTTOM DOUBLE NUMBER *)
13 SEC, TYA, BOT 2 + SBC, BOT 2 + STA,
14 TYA, BOT 3 + SBC, BOT 3 + STA,
15 1 BYTE.IN MINUS JMP, -

FORTH INTEREST GROUP MAY- 1, 1979

wn
(@]
>

30

(STACK MANIPULATION
CODE OVER

SEC LDA, PHA,

CODE DROP

CODE SWAP

SEC 1+ LDA,

CODE DUP

[o) ’
NS W= OWO OV WN =O

SCR # 31
0 (MEMORY INCREMENT,
1
2 CODE +!
3 CLC, BOT X) LDA,
4 BOT INC, 0=
5 BOT X) LDA,
6
7 CODE TOGGLE
8 SEC X) LDA,
9
10 --—>
11
12
13
14
15
SCR # 32

(MEMORY FETCH AND STORE

CODE @
BOT X) LDA,
BOT INC, O=

BOT X) LDA,

0

1

2

3

4

5 CODE C@
6

7

8 CODE ! (
9 SEC LDA,
10 SEC 1+ LDA,
12 CODE C!

13 SEC LDA,
14

15 DECIMAL ;S

FORTH INTEREST GROUP

POP -2 BYTE.

SEC LDA, PHA,
BOT 1+ LDY,

BOT LDA, PHA,

SEC 1+ ADC,

BOT X) STA,

BOT X) STA,

WFR-79MAR29)
(DUPLICATE SECOND ITEM AS NEW BOTTOM %)
SEC 1+ LDA, ©PUSH JMP,

(DROP BOTTOM STACK ITEM *)
IN DROP ! (C.F. VECTORS DIRECTLY TO “POP’)

(EXCHANGE BOTTOM AND SECOND ITEMS ON STACK *#*)
BOT LDA, SEC STA,

SEC 1+ STY, PUT JMP,

(DUPLICATE BOTTOM ITEM ON STACK *)
BOT 1+ LDA, PUSH JMP,

WFR-79MAR30)

(ADD SECOND TO MEMORY 16 BITS ADDRESSED BY BOTTOM *)

SEC ADC, BOT X) STA,

IF, BOT 1+ INC THEN,

BOT X) STA, POPTWO JMP,

(BYTE AT ADDRESS-2,
BOT EOR, SEC X) STA,

BIT PATTERN-1 ... *)
POPTWO JMP,

WFR-781202)
(REPLACE STACK ADDRESS WITH 16 BIT *)
PHA, (CONTENTS OF THAT ADDRESS *)
IF, BOT 1+ INC, THEN, BOT X) LDA, PUT JMP,

(REPLACE STACK ADDRESS WITH POINTED 8 BIT BYTE *)

BOT STA, BOT 1+ STY, NEXT JMP,
STORE SECOND AT 16 BITS ADDRESSED BY BOTTOM *)
BOT INC, O= IF, BOT l+ INC, THEN,

BOT X) STA, POPTWO JMP,

(STORE SECOND AT BYTE ADDRESSED BY BOTTOM *)
POPTWO JMP,

MAY 1, 1979

(™

SCR # 33
0 (:y, 3, WFR-79MAR30)
1
2 @ o (CREATE NEW COLOR-DEFINITION UNTIL “;° *)
3 . 7EXEC !CSP CURRENT @ CONTEXT !
4 CREATE] ;CODE IMMEDIATE
5 1P 1+ LDA, PHA, 1IP LDA, PHA, CLC, W LDA, 2 # ADC,
6 IP STA, TYA, W 1+ ADC, 1IP 1+ STA, NEXT JMP,
7
8
9 : ; (TERMINATE COLON-DEFINITION *)
10 7CSP COMPILE ;S :
11 SMUDGE [; IMMEDIATE
12
13
14
15 -->
SCR # 34
0 (CONSTANT, VARIABLE, USER WFR-79MAR30)
1 : CONSTANT (WORD WHICH LATER CREATES CONSTANTS *)
2 CREATE SMUDGE , ;CODE
3 2 # LDY, W)Y LDA, PHA, 1INY, W)Y LDA, PUSH JMP,
4
5 : VARIABLE (WORD WHICH LATER CREATES VARIABLES *)
6 CONSTANT ;CODE
7 CLC, W LDA, 2 # ADC, PHA, TYA, W l+ ADC, PUSH JMP,
8 :
9
10 : USER (CREATE USER VARIABLE *)
11 CONSTANT ;CODE
12 2 # LDY, CLC, W)Y LDA, UP ADC, PHA,
13 0 # LDA, UP 1+ ADC, PUSH JMP,
14
15 -->
SCR # 35
0 (DEFINED CONSTANTS WFR-78MAR22)
1 HEX
2 00 CONSTANT O 01 CONSTANT 1
3 02 CONSTANT 2 03 CONSTANT 3
4 20 CONSTANT BL (ASCII BLANK *)
5 40 CONSTANT C/L (TEXT CHARACTERS PER LINE %)
6
7 3BEO CONSTANT. FIRST (FIRST BYTE RESERVED FOR BUFFERS *)
8 4000 CONSTANT LIMIT (JUST BEYOND TOP OF RAM #*)
9 80 CONSTANT B/BUF (BYTES PER DISC BUFFER *%)
10 8 CONSTANT B/SCR (BLOCKS PER SCREEN = 1024 B/BUF / *)
11
12 00 +ORIGIN
13 : +ORIGIN LITERAL + ; (LEAVES ADDRESS RELATIVE TO ORIGIN *)
14 --> -
15
FORTH INTEREST GROUP MAY 1, 1979

SCR # 36
0 (USER VARIABLES WFR~-78APR29)
1 HEX (0 THRU 5 RESERVED, REFERENCED TO $00AQ *)
2 (06 USER S0) (TOP OF EMPTY COMPUTATION STACK *)
3 (08 USER RO) (TOP OF EMPTY RETURN STACK *)
4 0A USER TIB (TERMINAL INPUT BUFFER *)
5 0C USER WIDTH (MAXIMUM NAME FIELD WIDTH *)
6 OE USER WARNING (CONTROL WARNING MODES *)
7 10 USER FENCE ‘ (BARRIER FOR FORGETTING *)
8 12 USER DP (DICTIONARY POINTER *)
9 14 USER VOC-LINK (TO NEWEST VOCABULARY *)
10 16 USER BLK (INTERPRETATION BLOCK *)
11 18 USER 1IN (OFFSET INTO SOURCE TEXT *%*)
12 1A USER OUT (DISPLAY CURSOR POSITION *)
13 1C USER SCR (EDITING SCREEN *)
14 -->
15
SCR # 37
0 (USER VARIABLES, CONT. WFR-79APR29)
1 1E USER OFFSET (POSSIBLY TO OTHER DRIVES *)
2 20 USER CONTEXT (VOCABULARY FIRST SEARCHED *#*)
3 22 USER CURRERNT (SEARCHED SECOND, COMPILED INTO *)
4 24 USER STATE (COMPILATION STATE *)
5 26 USER BASE (FOR NUMERIC INPUT-OUTPUT *)
6 28 USER DPL (DECIMAL POINT LOCATION *)
7 2A USER FLD (OUTPUT FIELD WIDTH *)
8 2C USER CSP (CHECK STACK POSITION *)
9 2E USER R# (EDITING CURSOR POSITION *)
10 30 USER HLD (POINTS TO LAST CHARACTER HELD IN PAD *)
11 -->
12
13
14
15
SCR # 38
0 (HI-LEVEL MISC. WFR-79APR29)
1 : 1+ 1 + H (INCREMENT STACK NUMBER BY ONE *)
2 : 2+ 2 + ; (INCREMENT STACK NUMBER BY TWO *) .
3 : HERE DP @ 3 (FETCH NEXT FREE ADDRESS IN DICT. *)
4 : ALLOT DP +! (MOVE DICT. POINTER AHEAD *)
5 : BERE ! 2 ALLOT 3 (ENTER STACK NUMBER TO DICT. *)
6 : C, HERE C! 1 ALLOT 3 (ENTER STACK BYTE TO DICT. *)
7 : - MINUS + H (LEAVE DIFF. SEC - BOTTOM *)
8 : = - 0= (LEAVE BOOLEAN OF EQUALITY *)
9 : < - 0« 3 . (LEAVE BOOLEAN OF SEC < BOT *)
10 ¢ > SWAP < H (LEAVE BOOLEAN OF SEC > BOT ¥*)
11 : ROT >R SWAP R> SWAP 3 (ROTATE THIRD TO BOTTOM *)
12 : SPACE BL EMIT : (PRINT BLANK ON TERMINAL *)
13 : -DUP DUP IF DUP ENDIF H (DUPLICATE NON-ZERO *)
14 -->
15
FORTH INTEREST GROUP MAY 1, 1979

™

o~

w
(@]
-]

— bt b bt g et
NS WN=— OWooONOTWLBeWN —-O

SCR

v}

L I R)
N W=D WO NV N —

w
@]
~

—
QUL LN —~O

#
(

#

.o

39

VARIABLE LENGTH NAME SUPPORT WFR-79MAR30)
TRAVERSE (MOVE ACROSS NAME FIELD %)
(ADDRESS-2, DIRECTION-1, I.E. -1=R TO L, +l=L TO R *)

SWAP

BEGIN OVER + 7F OVER C@ < UNTIL SWAP DROP H

(NFA OF LATEST WORD %)

LATEST CURRENT @ @

FOLLOWING BAVE LITERALS DEPENDENT ON COMPUTER WORD SIZE)

LFA 4 -~ (CONVERT A WORDS PFA TO LFA *)
CFA 2 - (CONVERT A WORDS PFA TO CFA *)
NFA 5 - -1 TRAVERSE ; (CONVERT A WORDS PFA TO NFA *)
PFA 1 TRAVERSE 5 + ; (CONVERT A WORDS NFA TO PFA *)
-—— -
40 v
ERROR' PROCEEDURES, PER SHIRA WFR-79MAR23)
!csp SP@ CSP ! H (SAVE STACK POSITION IN “CSP”° *)
?ERROR (BOOLEAN-2, ERROR TYPE-1, WARN FOR TRUE *)
SWAP IF ERROR ELSE DROP ENDIF ;

?COMP STATE @ O= 11 ?ERROR ; (ERROR IF NOT COMPILING *)

?EXEC STATE @ 12 ?ERROR ; (ERROR IF NOT EXECUTING *)
?PAIRS - 13 ?ERROR ; (VERIFY STACK VALUES ARE PAIRED *)
?CSP SP@ CSP @ - 14 ?ERROR ; (VERIFY STACK POSITION *)
?7LOADING (VERIFY LOADING FROM DISC *)
BLK @ O= 16 ?ERROR ; -—>

41

COMPILE, SMUDGE, HEX, DECIMAL WFR~79APR20)
COMPILE (COMPILE THE EXECUTION ADDRESS FOLLOWING *).

?COMP R> DUP 2+ >R @ , ;

2 0 STATE ! ; IMMEDIATE (STOP COMPILATION *)
:] CO STATE ! ; (ENTER COMPILATION STATE *)
SMUDGE LATEST 20 TOGGLE ; (ALTER LATEST WORD NAME *)
11 : HEX 10 BASE | ; (MAKE HEX THE IN-OUT BASE *)
ig : DECIMAL OA BASE ! ; (MAKE DECIMAL THE IN-OUT BASE *)
is
FORTH INTEREST GROUP - ' . MAY 1, 1979

wn
(@]
-]
~

[
owvwoo~NOWLEWN-O
.

(=
Pk

e
v &N

w
o
P
=

oSN WN=O

10

e se o~

10

s
N
.

FORTH

42
;CODE WFR-79APR20)
(;CODE) (WRITE CODE FIELD POINTING TO CALLING ADDRESS *)
R> LATEST PFA CFA |
; CODE (TERMINATE A NEW DEFINING WORD #*)
7CSP COMPILE (;CODE)
[COMPILE] [SMUDGE 3 IMMEDIATE
-> .
43
<BUILD, DOES> v WFR-79MAR20)

<BUILDS 0 CONSTANT ; (CREATE HEADER FOR °“DOES>" WORD #*)

DOES>

44
TEXT

COUNT

TYPE

(REWRITE PFA WITH CALLING HI-LEVEL ADDRESS *)
(REWRITE CFA WITH °“DOES>‘ CODE *)

R> LATEST PFA ! ;CODE
IP 1+ LDA, PHA, IP LDA, PHA, (BEGIN FORTH NESTING)
2 # LDY, W)Y LDA, IP STA, (FETCH FIRST PARAM)
INY, W)Y LDA, IP 1+ STA, (AS NEXT INTERP. PTR)
)

cLC, W LDA, 4 # ADC, PHA, (PUSH ADDRESS OF PARAMS
W 1+ LDA, 00 # ADC, PUSH JMP,

OUTPUTS WFR-79APRO2)
DUP 14+ SWAP C@ ; (LEAVE TEXT ADDR. CHAR. COUNT ¥*)
(TYPE STRING FROM ADDRESS-2, CHAR.COUNT-1 *)

~-DUP IF OVER + SWAP
DO I C@ EMIT LOOP ELSE DROP ENDIF ;

~-TRAILING (ADJUST CHAR. COUNT TO DROP TRAILING BLANKS *%)

(S

DUP O DO OVER OVER + 1 - c@
BL - IF LEAVE ELSE 1 - ENDIF LOOP ;

(TYPE IN-LINE STRING, ADJUSTING RETURN *)
R COUNT DUP 1+ R> 4+ >R TYPE ;

o 22 STATE @ (COMPILE OR PRINT QUOTED STRING *)
IF COMPILE (.") WORD HERE C@ 1+ ALLOT
ELSE " WORD HERE COUNT TYPE ENDIF ;
IMMEDIATE -—>
INTEREST GROUP MAY 1, 1979

35

SCR # 45

WFR-79APR29)

0 (TERMINAL INPUT
1

2 EXPECT (TERMINAL INPUT MEMORY-2, CHAR LIMIT-1 *)
3 OVER + OVER DO KEY DUP OE +ORIGIN (BS) @ =

4 IF DROP 08 OVER I = DUP R> 2 - + >R -

5 ELSE (NOT BS) DUP 0D =

6 IF (RET) LEAVE DROP BL O ELSE DUP ENDIF

7 1 ¢t 0 I 1+ !

8 ENDIF EMIT LOOP DROP ;

9 QUERY TIB @ 50 EXPECT O IN !

10 8081 HERE

11 : X BLK @ (END-OF-TEXT IS NULL *)
12 IF (DISC) 1 BLK +! O IN ! BLK @ 7 AND O=

13 IF (SCR END) ?EXEC R> DROP ENDIF (disc dependent)
14 ELSE (TERMINAL) R> DROP
15 ENDIF ; ! IMMEDIATE -=>

SCR # 46

0 (FILL, ERASE, BLANKS, HOLD, PAD WFR-79APRO2)
1 FILL (FILL MEMORY BEGIN-3, QUAN-2, BYTE-1 *)
2 SWAP >R OVER C! DUP 1+ R> 1 - CMOVE ;

3 :

4 ERASE (FILL MEMORY WITH ZEROS BEGIN-2, QUAN-1 *)
5 0 FILL ;

6

7 BLANKS (FILL WITH BLANKS BEGIN-2, QUAN-1 %)
8 BL FILL ;

9

10 : HOLD (HOLD CHARACTER IN PAD *)
11 -1 HLD +! HLD @ C!

12

13 : PAD HERE 44 + (PAD IS 68 BYTES ABOVE HERE *)
14 (DOWNWARD HAS NUMERIC OUTPUTS; UPWARD MAY HOLD TEXT *)
15 -=->

SCR # 47 |

0 (WORD, WFR-79APRO2) |
1 : WORD (ENTER WITH DELIMITER, MOVE STRING TO “HERE’ *) |
2 BLK @ IF BLK @ BLOCK ELSE TIB @ ENDIF

3 IN @ + SWAP (ADDRESS-2, DELIMITER-1)

4 ENCLOSE (ADDRESS-4, START-3, END-2, TOTAL COUNT-1)
5 HERE 22 BLANKS (PREPARE FIELD OF 34 BLANKS)

6 IN +! (STEP OVER THIS STRING)

7 OVER - >R (SAVE CHAR COUNT)

8 R HERE C! (LENGTH STORED FIRST)

9 + HERE 1+ :
10 R> CMOVE 3 (MOVE STRING FROM BUFFER TO HERE+l)
11
12
13
14

15 -=->

FORTH INTEREST GROUP

MAY 1, 1979

2]
@}
o]

woNOTWL PrLWN —O

SCR

w
(@) bt et b et et b
x N WNN~OWOoON OB WND-O

(o
owoo~NOTULEWN-~O

48
((NUMBER-, NUMBER, -FIND, WFR-79APR29)
: (NUMBER) (CONVERT DOUBLE NUMBER, LEAVING UNCONV. ADDR. *)
BEGIN 1+ DUP >R C@ BASE @ DIGIT '
WHILE SWAP BASE @ U* DROP ROT BASE @ U* D+
'DPL @ 1+ TIF 1 DPL +! ENDIF R> REPEAT R> ;
: NUMBER (ENTER W/ STRING ADDR. LEAVE DOUBLE NUMBER *)
0 0 ROT DUP 1+ C@ 2D = DUP >R + -l
"BEGIN DPL ! (NUMBER) DUP C@ BL -
WHILE DUP C@ 2E - 0O 7?ERROR’ 0 REPEAT
DROP R> 1IF DMINUS ENDIF
: —FIND (RETURN PFA-3, LEN BYTE-2, TRUE-1; ELSE FALSE *)
BL WORD HERE CONTEXT @ @ (FIND)
DUP O= IF DROP HERE LATEST (FIND) ENDIF ;
-—=>
49
(ERROR HANDLER WFR-79APR20)
: (ABORT) ABORT ; (USER ALTERABLE ERROR ABORT %)
: ERROR (WARNING: -1=ABORT, 0=NO DISC, 1=DISC *)
WARNING @ 0< (PRINT TEXT LINE REL TO SCR #&4 *)
IF (ABORT) ENDIF HERE COUNT TYPE ." 7 "
MESSAGE SP! IN @ BLK @ QUIT ;

: ID. (PRINT NAME FIELD FROM ITS HEADER ADDRESS *#*)
PAD 020 5F FILL DUP PFA LFA OVER -
PAD SWAP CMOVE PAD COUNT O1lF AND TYPE SPACE 5

50 : :
(CREATE WFR-79APR28)

: CREATE (A SMUDGED CODE HEADER TO PARAM FIELD *)
(WARNING IF DUPLICATING A CURRENT NAME *)
TIB HERE OA0 + < 2 ?ERROR (6502 only)

-FIND (CHECK IF UNIQUE IN CURRENT AND CONTEXT)
IF (WARN USER) DROP NFA 1ID.
4 MESSAGE SPACE ENDIF
HERE DUP C@ WIDTH @ MIN 1+ ALLOT
DP C@ OFD = ALLOT (6502 only)
DUP A0 TOGGLE HERE 1 -~ 80 TOGGLE (DELIMIT BITS)

11 LATEST , CURRENT @ !
12 HERE 2+ ,
13 -=>
14
15
FORTH INTEREST GROUP ' MAY 1, 1979

#0

(

o,
\

w
@)
=

W N UMBW N -=O

bt et ek bt e et
NS WN=OW oSNNI~ WND O

51

(LITERAL, DLITERAL, {COMPILE], ?7STACK WFR-79APR29)

: [COMPILE]) (FORCE COMPILATION OF AN IMMEDIATE WORD *)
-FIND O= 0 ?ERROR DROP CFA , 3y IMMEDIATE

: LITERAL (IF COMPILING, CREATE LITERAL *)
STATE @ IF COMPILE LIT , ENDIF 3 IMMEDIATE

: DLITERAL (IF COMPILING, CREATE DOUBLE LITERAL %)

STATE @ 1IF SWAP [COMPILE] LITERAL
[COMPILE] LITERAL ENDIF ; IMMEDIATE

(FOLLOWING DEFINITION IS INSTALLATION DEPENDENT)

: ?STACK (QUESTION UPON OVER OR UNDERFLOW OF STACK *)
09E SrP@ < 1 ?ERROR SP@ 020 < 7 ?ERROR

-

52 :
(INTERPRET, WFR-79APRLS)

: INTERPRET (INTERPRET OR COMPILE SOURCE TEXT INPUT WORDS *)
BEGIN ~FIND

IF (FOUND) STATE @ <

IF CFA , ELSE CFA EXECUTE ENDIF ?STACK

ELSE HERE NUMBER DPL @ 1+
IF [COMPILE] DLITERAL
ELSE DROP [COMPILE] LITERAL ENDIF ?STACK

ENDIF AGAIN ;

53
(IMMEDIATE, VOCAB, DEFIN, FORTH, (DJK-WFR-79APR29)
: IMMEDIATE (TOGGLE PREC. BIT OF LATEST CURRENT WORD *)

LATEST 40 TOGGLE ;

: VOCABULARY (CREATE VOCAB WITH ‘V-HEAD® AT VOC INTERSECT. *)
<BUILDS AO081 » CURRENT @ CFA ,
HERE VOC-LINK @ , VOC-LINK !
DOES> 2+ CONTEXT ! H

VOCABULARY FORTH IMMEDIATE (THE TRUNK VOCABULARY #*)

¢ DEFINITIONS (SET THE CONTEXT ALSO AS CURRENT VOCAB *)
CONTEXT @ CURRENT ! H

(SKIP INPUT TEXT UNTIL RIGHT PARENTHESIS *)
29 WORD ; IMMEDIATE —-——>

.o
~~

FORTH INTEREST GROUP MAY 1, 1979

o/

wn
— . (@]
QWO ULBsWLWN—-O X

[
Pt

b bt et
[S. B = BN UCN N}

wn
(@)
-~}

WoOoONOOWULBEWN=~O

SCR

NN ~=O

54
(QUIT, ABORT WFR-79MAR30)
: QUIT (RESTART, INTERPRET FROM TERMINAL *)
0 BLK | [COMPILE] [
BEGIN RP! CR QUERY INTERPRET
STATE @ 0= IF ." OK" ENDIF AGAIN ;
: ABORT (WARM RESTART, INCLUDING REGISTERS *)
SP! DECIMAL DRO
CR ." FORTH-65 V 4.0"
[COMPILE] FORTH DEFINITIONS QUIT ;
-
55
(COLD START WFR-79APR29 ')
CODE COLD (COLD START, INITIALIZING USER AREA *)
HERE 02 +ORIGIN | (POINT COLD ENTRY TO HERE)
0C +ORIGIN LDA, ‘T FORTH 4 + STA, (FORTH VOCAB.)
0D +ORIGIN LDA, ‘T FORTH 5 + STA,
- 15 # LDY, (INDEX TO VOC-LINK) O= IF, (FORCED)
HERE 06 +ORIGIN ! (POINT RE-ENTRY TO HERE)
OF # LDY, (INDEX TO WARNING) THEN, (FROM IF,)
10 +ORIGIN LDA, UP STA, (LOAD UP)
11 +ORIGIN LDA, UP 1+ STA,
BEGIN, O0C +ORIGIN ,Y LDA, (FROM LITERAL AREA)
UP)Y STA, (TO USER AREA)
DEY, 0< END,
T ABORT 100 /MOD # LDA, IP 1+ STA,
LDA, 1IP STA,
6C # LDA, W 1 - STA, ‘T RP! JMP, (RUN) =-=>
56
(MATH UTILITY . DJK-WFR-79APR29)
CODE S->D (EXTEND SINGLE INTEGER TO DOUBLE *)
BOT 1+ LDA, O0< IF, DEY, THEN, TYA, PHA, PUSH JMP,
: - 0< IF MINUS ENDIF ; (APPLY SIGN TO NUMBER BENEATH *)
: D+- (APPLY SIGN TO DOUBLE NUMBER BENEATH #)
0< 1IF DMINUS ENDIF ;
: ABS DUP +- (LEAVE ABSOLUTE VALUE #*)
: DABS DUP D+- (DOUBLE INTEGER ABSOLUTE VALUE *)
: MIN (LEAVE SMALLER OF TWO NUMBERS *)
OVER OVER > IF SWAP ENDIF DROP ;
: MAX - (LEAVE LARGET OF TWO NUMBERS *)
OVER OVER < IF SWAP ENDIF DROP ; -->

FORTH INTEREST GROUP - MAY 1, 1979

(™~

o~

SCR # 57
0 (MATH PACKAGE DJK-WFR-79APR29)
1 : M* (LEAVE SIGNED DOUBLE PRODUCT OF TWO SINGLE NUMBERS *)
2 OVER OVER XOR >R ABS SWAP ABS U* R> D+-
3 M/ (FROM SIGNED DOUBLE-3-2, SIGNED DIVISOR-1 *)
4 (LEAVE SIGNED REMAINDER-2, SIGNED QUOTIENT-1 *)
5 OVER >R >R DABS R ABS U/
6 R> R XOR +- SWAP R> +- SWAP ;
7 : % U* DROP (SIGNED PRODUCT *)
8 : /MOD >R S->D R> M/ 3 (LEAVE REM-2, QUOT-1 %)
9 : / /MOD SWAP DROP ; (LEAVE QUOTIENT *#%)
10 : MOD /MOD DROP (LEAVE REMAINDER *)
11 ¢ */MOD (TAKE RATION OF THREE NUMBERS, LEAVING *)
12 SR M* R> M/ ; (REM~-2, QUOTIENT-1 *)
13 : */ * /MOD SWAP DROP ; (LEAVE RATIO OF THREE NUMBS *)
14 : M/MOD (DOUBLE, SINGLE DIVISOR ... REMAINDER, DOUBLE %)
15 SR -0 R U/ R> SWAP >R U/ R> 3 -—>
SCR # 58
0 (DISC UTILITY, GENERAL USE WFR-79APRO2)
1 FIRST VARIABLE USE (NEXT BUFFER TO USE, STALEST *)
2 FIRST VARIABLE PREV (MOST RECENTLY REFERENCED BUFFER *)
3
4 : +BUF (ADVANCE ADDRESS-1 TO NEXT BUFFER. RETURNS FALSE *)
5 84 (I.E. B/BUF+4) + DUP LIMIT = (IF AT PREV %)
6 IF DROP FIRST ENDIF DUP PREV @ -
7
8 : UPDATE (MARK THE BUFFER POINTED TO BY PREV AS ALTERED *)
9 PREV @ @ 8000 OR PREV @ |
10
11 : EMPTY-BUFFERS (CLEAR BLOCK BUFFERS; DON’T WRITE TO DISC *)
12 FIRST LIMIT OVER - ERASE 3
13 , . :
14 : DRO 0 OFFSET ! ; (SELECT DRIVE #0 *)
15 : DRI 07D0 OFFSET | ; - (SELECT DRIVE #1 *)
SCR # 59
0 (BUFFER WFR-79APRO2)
1 : BUFFER _ (CONVERT BLOCK# TO STORAGE ADDRESS *)
2 USE @ DUP >R (BUFFER ADDRESS TO BE ASSIGNED)
3 BEGIN +BUF UNTIL (AVOID PREV) USE ! (FOR NEXT TIME
4 R @ O0< (TEST FOR UPDATE IN THIS BUFFER)
5 IF (UPDATED, FLUSH TO DISC)
6 R 2+ (STORAGE LOC.)
7 R @ 7FFF AND (ITS BLOCK #)
8 0 R/W (WRITE SECTOR TO DISC)
9 ENDIF
10 R ! (WRITE NEW BLOCK # INTO THIS BUFFER)
11 R PREV | (ASSIGN THIS BUFFER AS ‘PREV’)
12 R> 2+ (MOVE TO STORAGE LOCATION) ;
13)
14 -->
15
FORTH INTEREST GROUP MAY 1, 1979

43

w
(@]
o~ B>WN —~0OX

o
o

—
N =

e
S W

[
(%]

w
(@]
=

[EE e Y SN
MWD~ OWOM~NS WU BEWN-=O

60

(BLOCK WFR-79APRO2)
¢ BLOCK (CONVERT BLOCK NUMBER TO ITS BUFFER ADDRESS *)
OFFSET @ + >R (RETAIN BLOCK # ON RETURN STACK)
PREV @ DUP @ R - DUP + (BLOCK = PREV ?)

IF (NOT PREV)
BEGIN +BUF 0= (TRUE UPON REACHING ‘PREV’)
IF (WRAPPED) DROP R BUFFER

DUP R 1. ‘ R/W (READ SECTOR FROM DISC)
2 =~ (BACKUP)

ENDIF

DUP @ R -~ DUP + O=

UNTIL (WITH BUFFER ADDRESS)
DUP PREV !

ENDIF '
R> DROP 2+
- :
61 :
(TEXT OUTPUT FORMATTING WFR-79MAYO03)
(LINE) (LINE#, SCR#, ... BUFFER ADDRESS, 64 COUNT *)

>R C/L B/BUF */MOD R> B/SCR * +
BLOCK + <C/L

: .LINE (LINE#, SCR#, ... PRINTED *)
(LINE) -TRAILING TYPE ;

: MESSAGE (PRINT LINE RELATIVE TO SCREEN #4 OF DRIVE 0 *)
WARNING @
IF (DISC IS AVAILABLE)
-DUP IF &4 OFFSET @ B/SCR / - LINE ENDIF
ELSE ." MSG # " . ENDIF ;
-—>
SCR # 62
0 (LOAD, --> WFR-79APRO2)
1
2 : LOAD (INTERPRET SCREENS FROM DISC *)
3 BLK @ >R IN @ >R 0 IN ! B/SCR * BLK !
4 INTERPRET R> IN ! R> BLK |
5
6 : —--> (CONTINUE INTERPRETATION ON NEXT SCREEN *)
7 ?LOADING O IN ! B/SCR BLK @ OVER
8 MOD - BLK +! IMMEDIATE
9
10 ==>
11
12
13
14
15
ORTH INTEREST GROUP MAY 1, 1979

A

wn
(@]
o]

Vo ~NOuUmdwWwN~=O

10

[
QWO NOTULEEWN —=O

—
p—

#f 63

(INSTALLATION DEPENDENT TERMIKNAL I-0, TIM WFR-79APR26)
(EMIT) ASSEMBLER
HERE -2 BYTE.IN EMIT ! (VECTOR EMITS® CF TO HERE)

XSAVE STX, BOT LDA, 7F # AND, 72C6 JSR, XSAVE LDX,
cLc, 1A # LDY, UP)Y LDA, O1 # ADC, UP)Y STA,
INY, UP)Y LDA, 00 # ADC, UP)Y STA, POP JMP,
(AND INCREMENT °OUT’)

(KEY)
HERE -2 BYTE.IN KEY ! (VECTOR KEYS’ CF TO HERE)
XSAVE STX, BEGIN, 8 # LDX,

BEGIN, 6E02 LDA, .A LSR, CS END, 7320 JSR,
BEGIN, 731D JSR, O X) CMP, O X) CMP, 0 X) CMP,
0 X) CMP, O X) CMP, 6E02 LDA, .A LSR, PHP, TYA,
.A LSR, PLP, CS IF, 80 # ORA, THEN, TAY, DEX,
0= END, 731D JSR, FF # EOR, 7F # AND, O= NOT END,
XSAVE LDX, PUSHOA JMP, -—>
t 64 : _
(INSTALLATION DEPENDENT TERMINAL I-0, TIM WFR-79APRO2)

(?TERMINAL) , '
HERE -2 BYTE.IN ?TERMINAL | (VECTOR LIKEWISE)
1 # LDA, 6E02 BIT, O= NOT IF,
BEGIN, 731D JSR, 6E02 BIT, O= END, INY, THEN,
TYA, PUSHOA JMP,

(CR)
HERE -2 BYTE.IN CR | (VECTOR CRS’ CF TO HERE)
XSAVE STX, 728A JSR, XSAVE LDX, NEXT JMP,

12 -=>

13

14

15

SCR # 65

O (INSTALLATION DEPENDENT DISC WFR-79APRO2)
1 6900 CONSTANT DATA (CONTROLIER PORT *)
2 6901 CONSTANT STATUSB (CONTROLLER PORT *)
3 .

4

5 : #HL (CONVERT DECIMAL DIGIT FOR DISC CONTROLLER *)
6 0 OA U/ SWAP 30 + HOLD 3

7

8 -=>

9

10

11

12
13
14
15

FORTH INTEREST GROUP MAY 1, 1979

45~

SCR # 66
(D/CHAR, ?DISC, WFR-79MAR23)
CODE D/CHAR (TEST CHAR-1. EXIT TEST BOOL-2, NEW CHAR-1 %)

DEX, DEX, BOT 1+ STY, CO # LDA,

BEGIN, STATUS BIT, O= NOT END, (TILL CONTROL READY)
DATA LDA, BOT STA, (SAVE CHAR)
SEC CMP, O= IF, INY, THEN, SEC STY, NEXT JMP,

: ?’DISC (UPON NAK SHOW ERR MSG, QUIT. ABSORBS TILL *)
1 D/CHAR >R O0O= (EOT, EXCEPT FOR SOR *)
IF (NOT SOH) R 15 =
IF (NAK) CR
BEGIN 4 D/CHAR EMIT _
UNTIL (PRINT ERR MSG TIL EOT) QUIT

—
OWwWEO~NN OV EBWN =-=O

—
ot

12
13 ENDIF (FOR ENQ, ACK)
14 BEGIN 4 D/CHAR DROP UNTIL (AT EOT)
15 ENDIF R> DROP -—>
SCR # 67 .

0 (BLOCK-WRITE WFR-790103)
1 CODE BLOCK-WRITE (SEND TO DISC FROM ADDRESS-2, COUNT-1 *)
2 2 # LDA, SETUP JSR, (WITH EOT AT END *)
3 BEGIN, 02 # LDA,

4 BEGIN, STATUS BIT, O= END, (TILL IDLE)

S N CPY, 0=

6 IF, (DONE) 04 # LDA, STATUS STA, DATA STA,

7 NEXT JMP,

8 THEN,

9 N 2+)Y LDA, DATA STA, INY,
10 0= END, (FORCED TO BEGIN)
11

12 -->
13
14
15
SCR # 68
(BLOCK~READ, WFR~-790103)

CODE BLOCK-READ (BUF.ADDR-1. EXIT AT 128 CHAR OR CONTROL *)
1 # LDA, SETUP JSR,
BEGIN, CO # LDA,

BEGIN, STATUS BIT, O= NOT END, (TILL FLAG)

50 (BVC, D6=DATA)

IF, DATA LDA, N)Y STA, INY, _ SWAP

0< END, (LOOP TILL 128 BYTES)
THEN, (OR D6=0, SO D7=1,)
NEXT JMP,

e
MW WN =O0OWOoOONOWLMEWN=O

FORTH INTEREST GROUP MAY 1, 1979

WFR-79MAYO03)

D=DRIVE)
O TO WRITE *)

1=READ O=WRITE %)

HOLD

(SECTOR 01-26)

00-76)

WFR-79MAR30)

WFR-79APR29)

s S

1979

SCR # 69
0 (R/W FOR PERSCI 1070 CONTROLLER
1 0A ALLOT HERE (WORKSPACE TO PREPARE DISC CONTROL TEXT)
: 2 (IN FORM: C TT SS /D, TT=TRACK, SS=SECTOR,
(3 (C =1 TO READ,
= 4 : R/W (READ/WRITE DISC BLOCK *)
5 (BUFFER ADDRESS-3, BLOCK #-2,
6 LITERAL HLD ! (JUST AFTER WORKSPACE) SWAP
7 0 OVER OVER OF9F > OR ?ERROR
8 0700 (2000 SECT/DR) /MOD #HL DROP HOLD BL
9 1A /MOD SWAP 1+ #HL #HL DROP BL HOLD
10 #HL #HL DROP BL HOLD (TRACK
11 DUP
12 IF 49 (I=READ) ©ELSE 4F (O=WRITE) ENDIF
13 HOLD HLD @ OA BLOCK-WRITE (SEND TEXT) ?DISC
14 IF BLOCK-READ ELSE B/BUF BLOCK-WRITE ENDIF
15 ?DISC -=>
SCR # 70
0 (FORWARD REFERENCES
1 00 BYTE.IN : REPLACED.BY ?EXEC
2 02 BYTE.IN : REPLACED.BY !CSP
3 04 BYTE.IN : REPLACED.BY CURRENT
4 08 BYTE.IN : REPLACED.BY CONTEXT
5 0C BYTE.IN : REPLACED.BY CREATE
6 OE BYTE.IN : REPLACED.BY]
7 10 BYTE.IN : REPLACED.BY (;CODE)
, 8 00 BYTE.IN -; REPLACED.BY ?CSP
(9 02 BYTE.IN ; REPLACED.BY COMPILE
“— 10 06 BYTE.IN ; REPLACED.BY SMUDGE
11 08 BYTE.IN ; REPLACED.BY [
12 00 BYTE.IN CONSTANT REPLACED.BY CREATE
13 02 BYTE.IN CONSTANT REPLACED.BY SMUDGE
14 04 BYTE.IN CONSTANT REPLACED.BY
15 06 BYTE.IN CONSTANT REPLACED.BY (;CODE) -=>
SCR # 71
0 (FORWARD REFERENCES
1 02 BYTE.IN VARIABLE REPLACED.BY (;CODE)
2 02 BYTE.IN USER REPLACED.BY (;CODE)
3 06 BYTE.IN ?ERROR REPLACED.BY ERROR
4 OF BYTE.IN ." REPLACED.BY WORD
5 1D BYTE.IN ." REPLACED.BY WORD
6 00 BYTE.IN (ABORT) REPLACED.BY ABORT
7 19 BYTE.IN ERROR REPLACED.BY MESSAGE
8 25 BYTE.IN ERROR REPLACED.BY QUIT
9 0C BYTE.IN WORD REPLACED.BY BLOCK
10 1IE BYTE.IN CREATE REPLACED.BY MESSAGE
11 2C BYTE.IN CREATE REPLACED.BY MIN
12 04 BYTE.IN ABORT REPLACED.BY DRO
13 2C BYTE.IN BUFFER REPLACED.BY R/W
14 30 BYTE.IN BLOCK REPLACED.BY R/W DECIMAL
15
— FORTH INTEREST GROUP MAY 1,

A7

SCR # 72
0 (°, FORGET, \ WFR-79APR28)
1 HEX 3 WIDTH !
2 ° (FIND NEXT WORDS PFA; COMPILE IT, IF COMPILING *)
3 -FIND O= 0 ?ERROR DROP [COMPILE] LITERAL 3
4 IMMEDIATE
5
6 : FORGET (FOLLOWING WORD FROM CURRENT VOCABULARY *)
7 CURRENT @ CONTEXT @ - 18 7ERROR
8 [COMPILE] ‘ DUP FENCE @ < 15 ?7ERROR
9 DUP NFA DP ! LFA @ CURRENT @ ! 3
10 :
11
12
13 -->
14
15
SCR # 73
0 (CONDITIONAL COMPILER, PER SHIRA WFR-79APRO1)
1 BACK HERE - , H (RESOLVE BACKWARD BRANCH *)
2
3 : BEGIN ?COMP HERE 1 H IMMEDIATE
4
5 : ENDIF ?7COMP 2 ?PAIRS HERE OVER - SWAP ! H IMMEDIATE
6
7 : THEN [COMPILE] ENDIF H IMMEDIATE
8
9 : DO COMPILE (DO) HERE 3 H IMMEDIATE
10
11 : LOOP 3 ?7PAIRS COMPILE (LOOP) BACK ; IMMEDIATE
12 '
13 : +LOOP 3 ?2PAIRS COMPILE (+LOOP) BACK ; IMMEDIATE
14
15 : UNTIL 1 ?PAIRS COMPILE OBRANCH BACK ; IMMEDIATE -->
SCR # 74
0 (CONDITIONAL COMPILER WFR-79APRO1)
1 END [COMPILE] UNTIL H IMMEDIATE
2
3 : AGAIN 1 ?7PAIRS COMPILE BRANCH BACK s IMMEDIATE
4
5 REPEAT >R >R [COMPILE] AGAIN
6 R> R> 2 - [COMPILE] ENDIF H IMMEDIATE
7
8 1F COMPILE OBRANCH HERE 0 s 2 5 IMMEDIATE
9
10 : ELSE : 2 ?PAIRS COMPILE BRANCH HERE 0 R
11 SWAP 2 [COMPILE] ENDIF 2 H IMMEDIATE
12
13 : WHILE [COMPILE] 1IF 2+ H IMMEDIATE
14
15 -=>

FORTH INTEREST GROUP

MAY 1, 1979

SCR # 75
(NUMERIC PRIMITIVES WFR-79APRO1)
SPACES 0 MAX -DUP IF O DO SPACE LOOP ENDIF ;
(<# PAD HLD !
#> DROP DROP HLD @ PAD OVER -

: SIGN ROT O< IF 2D HOLD ENDIF H

.__‘ .
OQOVW NN OWU; BPWLWN —O

(CONVERT ONE DIGIT, HOLDING IN PAD *)
BASE @ M/MOD ROT 9 OVER < IF 7 + ENDIF 30 + HOLD
11
12 : #s BEGIN # OVER OVER OR 0= UNTIL ;
13 -=> '
14
15
SCR # 76 .
0 (OUTPUT OPERATORS WFR-79APR20)
1 : D.R (DOUBLE INTEGER OUTPUT, RIGHT ALIGNED IN FIELD *)
2 >R SWAP OVER DABS <# #S SIGN {#>
3 R> OVER - SPACES TYPE ;
4
5 D. 0 D.R SPACE ; (DOUBLE INTEGER OUTPUT %)
6
7 : .R >R S->D R> D.R (ALIGNED SINGLE INTEGER %)
- 8
{ 9 . S->D D. ; (SINGLE INTEGER OUTPUT *)
— 10
11 : 2 @ . (PRINT CONTENTS OF MEMORY *)
12
13 ° . CFA ° MESSAGE 2A + ! (PRINT MESSAGE NUMBER)
14 —-=>
15
SCR # 77
0 (PROGRAM DOCUMENTATION WFR-79APR20)
1 HEX '
2 : LIST (LIST SCREEN BY NUMBER ON STACK *)
3 DECIMAL CR DUP SCR !
4 " SCR # " . 10 0 DO CR I 3 .R SPACE
5 I SCR @ .LINE LOOP CR 3
6
7 : INDEX (PRINT FIRST LINE OF EACH SCREEN FROM-2, TO-1 %)
8 0OC EMIT (FORM FEED) CR 1+ SWAP
9 DO CR I 3 .R SPACE
10 0 I .LINE
11 ?TERMINAL IF LEAVE ENDIF LOOP
12 : TRIAD (PRINT 3 SCREENS ON PAGE, CONTAINING # ON STACK *)
13 0C EMIT (FF) 3 / 3 * 3 OVER + SWAP
14 DO CR I LIST LOOP CR
15 OF MESSAGE CR DECIMAL -—>

~ FORTH INTEREST GROUP o MAY 1, 1979

SCR # 78

0 (TOOLS WFR-79APR20)
1 HEX

g 2 : VLIST . (LIST CONTEXT VOCABULARY *) B
3 80 ouT | CONTEXT @ @ {
4 BEGIN OUT @ C/L > IF CR O OUT | ENDIF
5 DUP ID. SPACE SPACE PFA LFA @
6 DUP 0= ?TERMINAL OR UNTIL DROP ;
7 --> :
8
9
10
11
12
13
14
15

SCR # 79 .

0 (TOOLS . WFR-79MAYO03)
1 HEX
2 B
3 CREATE MON (CALL MONITOR, SAVING RE-ENTRY TO FORTH *)
4 0 c, 4C C, ° LIT 18 + , SMUDGE
5
6
7
8

.9
10 DECIMAL
11 HERE FENCE | _ _
12 HERE 28 +ORIGIN | (COLD START FENCE)
13 HERE 30 +ORIGIN ! (COLD START DP)
14 LATEST 12 +ORIGIN ! (TOPMOST WORD)

15 % FORTH 6 + 32 +0RIGIN ! (COLD VOC-LINK) ;S

SCR # 80
-=>

. 15

FORTH INTEREST GROUP A MAY 1, 1979

S0

This is a sample editor, compatable with the fig~FORTH model and simple ferminal
devices. The line and screen editing functions are portable. The code definition
for the string MATCH could be written high level or translated.

SCR # 87

0 (TEXT, LINE WFR-79MAYO1)
1 FORTH DEFINITIONS HEX
2 : TEXT (ACCEPT FOLLOWING TEXT TO PAD *)
3 HERE C/L 1+ BLANKS WORD HERE PAD C/L 1+ CMOVE ;
4
5 : LINE (RELATIVE TO SCR, LEAVE ADDRESS OF LINE %)
6 DUP FFFO AND 17 <?7ERROR (KEEP ON THIS SCREEN)
7 SCR @ (LINE) DROP
8 —-->
9
10
11
12
13
14
15
SCR # 88
0 (LINE EDITOR WFR-79MAYO03)
1 VOCABULARY EDITOR IMMEDIATE HEX
2 WHERE (PRINT SCREEN # AND IMAGE OF ERROR ¥*)
3 DUP B/SCR [/ DUP SCR ! ." SCR # " DECIMAL .
4 _.SWAP C€/L /MOD C/L * ROT BLOCK + CR C/L TYPE
5 CR HERE C@ - SPACES 5E EMIT [COMPILE] EDITOR QUIT ;
6
7 EDITOR DEFINITIONS
8 : #LOCATE (LEAVE CURSOR OFFSET-2, LINE-1 %)
9 R# @ <¢/L /MOD
10 : #LEAD _ (LINE ADDRESS-2, OFFSET-1 TO CURSOR *)
11 #LOCATE LINE SWAP :
12 : #LAG (CURSOR ADDRESS-2, COUNT-1 AFTER CURSOR *)
13 #LEAD DUP >R + C/L R> -
14 : -MOVE (MOVE IN BLOCK BUFFER ADDR FROM-2, LINE TO-1 *)
15 LINE C/L CMOVE UPDATE ; -
SCR # 89
0 (LINE EDITING COMMANDS WFR-79MAYO03)
1 : H 4 (HOLD NUMBERED LINE AT PAD *)
2 LINE PAD 14+ <C/L DUP PAD C! CMOVE ; '
3
4 : E (ERASE LINE-1 WITH BLANKS *)
5 LINE C/L BLANKS UPDATE ;
6
7 ¢ S (SPREAD MAKING LINE # BLANK *)
8 DUP 1 - (LIMIT) OE (FIRST TO MOVE)
9 DO I LINE I 14 -MOVE -1 +LOOP E ;
10
11 : D (DELETE LINE-1, BUT HOLD IN PAD *)
12 DUP H OF DUP ROT
13 Do I 1+ LINE I -MOVE LOOP E ;
14
15 -
FORTH INTEREST GROUP MAY 1, 1979

S/

SCR

-
OWwW O~NOWUMBPWNFHO

90
(LINE EDITING COMMANDS _ WFR-79MAYO03)

: M (MOVE CURSOR BY SIGNED AMOUNT-1, PRINT ITS LINE ¥*)
R# +! CR SPACE #LEAD TYPE 5F EMIT
#LAG TYPE #LOCATE . DROP H

: T (TYPE LINE BY #-1, SAVE ALSO IN PAD *)
pup ¢/L * R# | DUP H O M ;
: L (RE-LIST SCREEN *)
SCR @ LIST 0 M ;
11 -->
12
13
14
15
SCR # 91
0 (LINE EDITING COMMANDS WFR-790105)
1 : R (REPLACE ON LINE #-1, FROM PAD *)
2 PAD 1+ SWAP -MOVE
3
4 P (PUT FOLLOWING TEXT ON LINE-1 *)
5 1 TEXT R
6
7 : 1 ' (INSERT TEXT FROM PAD ONTO LINE # *)
8 DUP S R
9 CR
10 : TOP : (HOME CURSOR TO TOP LEFT OF SCREEN *)
11 0 R# ! »
12 -->
13
14
15
SCR # 92
0 (SCREEN EDITING COMMANDS WFR-79APR27)
1 : CLEAR (CLEAR SCREEN BY NUMBER-1 *)
2 SCR ! 10 .0 DO FORTH I EDITOR E LOOP ;
3
4 : FLUSH (WRITE ALL UPDATED BLOCKS TO DISC *)
5 [LIMIT FIRST - B/BUF 4 + / 1 (NUMBER OF BUFFERS)
6 LITERAL O DO 7FFF BUFFER DROP LOOP ;
7
8 : COPY (DUPLICATE SCREEN-2, ONTO SCREEN-1 *)
9 B/SCR * OFFSET @ + SWAP B/SCR * B/SCR OVER + SWAP
10 DO DUP FORTH I BLOCK 2 - | 1+ UPDATE LOOP
11 DROP FLUSH ;
12 -->
13
14
15
FORTH INTEREST GROUP MAY 1, 1979

(~

o

SCR # 93
0 (STRING EDITING PRIMITIVES ' WFR~79APR22)
1 CODE MATCH (CURSOR ADDRESS-4, BYTES LEFT-3, STRING ADDR-2 *)
2 (ITS COUNT-1. LEAVE BOOLEAN-2, CURSOR ADVANCEMENT-1 *)
3 4 # LDA, SETUP JSR, DEX, DEX, DEX, DEX,
4 BOT STY, BOT l+ STY,
5 BEGIN, (NEW MATCH) DROP (ERR) FF # LDY,
6 BEGIN, DROP (ERR) INY, N CPY, CS NOT
7 IF, (Y < STRING) N 2+)Y LDA, N 6 +)Y CMP,

8

9

ROT 1 0= NOT UNTIL, (REPEAT FOR GOOD MATCH)
N 6 + INC, 0= IF, N 7 + INC, ENDIF,
10 BOT INC, 0= IF, BOT 1+ INC, ENDIF, (CUR MOT)
11 N 4 + LDA, 0= IF, N 5 + DEC, ENDIF,
12 N 4 + DEC, (DECREMENT BUFFER REMAINING)
13 N 4 + LDA, N CMP, (REMAINING - STRING SIZE)
14 N 5 + LDA, N 1+ SBC,
15 ROT 1 CS NOT UNTIL, --> (REPT TILL OUT OF BUFFER)
SCR # 94
0 (CONCLUSION OF STRING MATCH WFR-79APR22)
1 0 # LDA, SEC STA, SEC 1+ STA, (BOOLEAN FALSE)
2 N 4 + LDY, (SPACE UNTIL END OF BUFFER)
3 ENDIF,
4 CLC, TYA, BOT ADC, PHA,
5 0 # LDA, BOT 1+ ADC, (ADJUST CURSOR MOTION)
6 PUT JMP, C;
7 —-=>
8
9
10
11
12
13
14
15
SCR # 95
0 (STRING EDITING COMMANDS WFR-79MAR24)
1 : ILINE (SCAN LINE WITH CURSOR FOR MATCH TO PAD TEXT, *)
2 (UPDATE CURSOR, RETURN BOOLEAN *).
3 #LAG PAD COUNT MATCH R# +I H
4
5 ¢ FIND (STRING AT PAD OVER FULL SCREEN RANGE, ELSE ERROR *)
6 BEGIN 3FF R# @ <
7 IF TOP PAD HERE C/L 1+ CMOVE O ERROR ENDIF
8 1LINE UNTIL
9 .
10 : DELETE (BACKWARDS AT CURSOR BY COUNT-1 ¥*)
11 >R~ #LAG + FORTH R - (SAVE BLANK FILL LOCATION)
12 #LAG R MINUS R# +! (BACKUP CURSOR)
13 #LEAD + SWAP CMOVE
14 R> BLANKS UPDATE ; (FILL FROM END OF TEXT)
15 -=>
FORTH INTEREST GROUP MAY 1, 1979

w
(@}
=

W oo~ vy WN = O

e o~ N

96

STRING EDITOR COMMANDS
N (FIND NEXT OCCURANCE OF PREVIOUS TEXT *) 4

FIND O M ;

WFR-79MAR24)

: F (FIND OCCURANCE OF FOLLOWING TEXT *)
1 TEXT N 3
: B (BACKUP CURSOR BY TEXT IN PAD *)
PAD C@ MINUS M
D ¢ (DELETE FOLLOWING TEXT *)
1 TEXT FIND PAD C@ DELETE O M ;
TILL (DELETE ON CURSOR LINE, FROM CURSOR TO TEXT END %)
#LEAD + 1 TEXT 1LINE O= O <?ERROR
#LEAD + SWAP - DELETE 0 M -=>
97
(STRING EDITOR COMMANDS WFR-79MAR23)
: C (SPREAD AT CURSOR AND COPY IN THE FOLLOWING TEXT *)
1 TEXT PAD COUNT :
#LAG ROT OVER MIN >R
FORTH R R# +! (BUMP CURSOR)
R - >R (CHARS TO SAVE)
DUP HERE R CMOVE (FPROM OLD CURSOR TO HERE)
HERE #LEAD + R> CMOVE (HERE TO CURSOR LOCATION)
R> CMOVE. UPDATE (PAD TO OLD CURSOR)
0 M (LOOK AT NEW LINE)
FORTH DEFINITIONS DECIMAL
LATEST 12 +ORIGIN ! (TOP NFA)
HERE 28 +ORIGIN ! (FENCE)
HERE 30 +ORIGIN ! (DP)
° EDITOR 6 + 32 +ORIGIN ! (VOC-LINK)
HERE FENCE ! ;S
98

FORTH INTEREST GROUP

u

MAY 1, 1979

